
3 Apr 2003 9:57 AR AR184-PP54-02.tex AR184-PP54-02.sgm LaTeX2e(2002/01/18)P1: FHD
10.1146/annurev.arplant.54.031902.135035

Annu. Rev. Plant Biol. 2003. 54:23–61
doi: 10.1146/annurev.arplant.54.031902.135035

Copyright c© 2003 by Annual Reviews. All rights reserved
First published online as a Review in Advance on March 6, 2003

UNDERSTANDING THE FUNCTIONS OF PLANT

DISEASE RESISTANCE PROTEINS

Gregory B. Martin1, Adam J. Bogdanove2, and Guido Sessa3
1Boyce Thompson Institute for Plant Research and Department of Plant Pathology,
Cornell University, Ithaca, New York 14853; email: gbm7@cornell.edu
2Department of Plant Pathology, Iowa State University, Ames, Iowa 50011;
email: ajbog@iastate.edu
3Department of Plant Sciences, Tel Aviv University, Tel Aviv, Israel 69978;
email: guidos@post.tau.ac.il

Key Words pathogen effector proteins, resistance genes, protein-protein
interactions

■ Abstract Many disease resistance (R) proteins of plants detect the presence of
disease-causing bacteria, viruses, or fungi by recognizing specific pathogen effector
molecules that are produced during the infection process. Effectors are often pathogen
proteins that probably evolved to subvert various host processes for promotion of the
pathogen life cycle. Five classes of effector-specific R proteins are known, and their
sequences suggest roles in both effector recognition and signal transduction. Although
some R proteins may act as primary receptors of pathogen effector proteins, most
appear to play indirect roles in this process. The functions of various R proteins require
phosphorylation, protein degradation, or specific localization within the host cell. Some
signaling components are shared by manyR gene pathways whereas others appear to
be pathway specific. New technologies arising from the genomics and proteomics
revolution will greatly expand our ability to investigate the role of R proteins in plant
disease resistance.
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INTRODUCTION

Plants are attacked by many disease-causing organisms including bacteria, fungi,
viruses, and nematodes. These pathogens cause large crop losses and probably
since the beginning of agriculture have contributed to human hunger and malnu-
trition. The control of plant diseases is thus of fundamental importance and is a
major objective of plant-breeding and pathology programs and the agricultural
chemical industry. Plants resist pathogen attacks both with preformed defenses
such as antimicrobial secondary compounds and by inducing defense responses
(72, 74). Inducible defenses can be activated upon recognition of general elicitors
such as bacterial flagellin and even host cell fragments released by pathogen dam-
age (65, 72). However, plants have also evolved sophisticated recognition systems
to detect proteins produced during infection by specific races of pathogens. These
proteins, referred to here as effectors, are recognized by plant disease resistance
(R) proteins in a highly specific manner first described genetically as the gene-for-
gene interaction (59). The identification of manyRgenes, and in many cases their
corresponding effector proteins, has accelerated research into the molecular basis
of gene-for-gene disease resistance (38, 112).

Classes of Disease Resistance (R) Proteins

The majority of R proteins that are activated upon effector recognition fall into five
classes based primarily upon their combination of a limited number of structural
motifs (Table 1). Class 1 consists of just one member, Pto from tomato, which has a
serine/threonine kinase catalytic region and a myristylation motif at its N terminus
(104, 113). Class 2 comprises a large number of proteins having a region of leucine-
rich repeats (LRRs), a putative nucleotide binding site (NBS), and an N-terminal
putative leucine-zipper (LZ) or other coiled-coil (CC) sequence. Class 3 is similar
to class 2 but instead of the CC sequence these proteins have a region with similarity
to the N terminus of the Toll and Interleukin 1 receptor (IL-1R) proteins that is
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TABLE 1 Plant disease resistance (R) proteins

Class ∗R Protein Plant Pathogen(s) or Pest(s) Effector(s) Reference(s)

1 Pto Tomato Pseudomonas AvrPto, (91, 113, 151)
syringae(B) AvrPtoB

2 Bs2 Pepper Xanthomonas AvrBs2 (120, 172)
campestris(B)

Dm3 Lettuce Bremia lactucae(F) (117)
Gpa2a Potato Globodera pallida(N) (190)
Hero Potato G. rostochiensis, (56)

G. pallida (N)
HRTb Arabidopsis Turnip Crinkle Virus Coat Protein (41)
I2 Tomato Fusarium oxysporum(F) (127, 167)
Mi Tomato Meloidogyne (118)

incognita(N)
Mi Tomato Macrosiphum (152, 192)

euphorbiae(I)
Mla Barley Blumeria graminis(F) (210)
Pib Rice Magnaporthe grisea(F) (194)
Pi-ta Rice M. grisea(F) AVR-Pita (26, 126)
R1 Potato Phytophthora (8)

infestans(O)
Rp1 Maize Puccinia sorghi(F) (39)
RPM1 Arabidopsis P. syringae(B) AvrRpm1, (44, 68,

AvrB 174)
RPP8b Arabidopsis Peronospora (115)

parasitica(O)
RPP13 Arabidopsis P. parasitica(O) (16)
RPS2 Arabidopsis P. syringae(B) AvrRpt2 (12, 119, 197)

RPS5 Arabidopsis P. syringae(B) AvrPphB (82, 195)
Rx1a Potato Potato Virus X Coat Protein (10)
Rx2 Potato Potato Virus X Coat Protein (10, 11,

138)
Sw-5 Tomato Tomato Spotted (24)

Wilt Virus
Xa1 Rice X. oryzae(B) (203)

3 L Flax Melampsora lini(F) (97)
M Flax M. lini (F)
N Tobacco Tobacco Mosaic Virus Helicase
P Flax M. lini (F) (51)
RPP1 Arabidopsis P. parasitica(O) (22)
RPP4 Arabidopsis P. parasitica(O) (183)
RPP5 Arabidopsis P. parasitica(O) (130)
RPS4 Arabidopsis P. syringae(B) AvrRps4 (62, 76)

4 Cf-2c Tomato Cladosporium fulvum(F) Avr2 (49, 106)
Cf-4d Tomato C. fulvum(F) Avr4 (88, 177)
Cf-5c Tomato C. fulvum(F) (49)
Cf-9d Tomato C. fulvum(F) Avr9 (87)

5 Xa21 Rice Xanthomonas oryzae(B) (168)

(Continued)
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TABLE 1 (Continued)

Class ∗R Protein Plant Pathogen(s) or Pest(s) Effector(s) Reference(s)

6 Hm1 Maize Cochliobolus (86)
carbonum(F)

HS1pro-1 Beet Heterodera schachtii(N) (28)
mlo Barley B. graminis(F) (27)
Rpg1 Barley Puccinia graminis(F) (25)
RPW8 Arabidopsis Erisyphe (200)

chicoracearum(F)
RRS1-R Arabidopsis Ralstonia (46)

solanacearum(B)
RTM1 Arabidopsis Tobacco Etch Virus (36)
RTM2 Arabidopsis Tobacco Etch Virus (199)
Ve1e, Ve2e Tomato Verticillium alboatrum(F) (90)

∗Shown are R proteins characterized to date, sorted by structural class (see text). The host plant and corresponding
pathogen(s) or pest(s) and effector proteins, where known, are given for each. Except for viruses, pathogen or pest type is
indicated in parentheses, abbreviated as: B, bacterium; F, fungus; I, insect; N, nematode, O, oomycete. The bottommost
proteins do not fit in any of the designated structural classes and are discussed briefly in the text. Highly similar members
of the same gene cluster are identified by matching superscript letters.

therefore referred to as the TIR region. The R proteins belonging to the first three
classes lack transmembrane (TM) domains and all are thought to be localized
intracellularly; this has implications, which are discussed below, for how pathogen
effector proteins are delivered to the plant cell and where R proteins act to intercept
these proteins. The Cf proteins from tomato form class 4. They lack an NBS and
instead have a TM and an extracellular LRR, and a small putatively cytoplasmic tail
without obvious motifs (50, 87). Finally, class 5 consists of just the Xa21 protein
from rice, which, in addition to an extracellular LRR and a TM, has a cytoplasmic
serine/threonine kinase region (168). The functions of R protein structural motifs
have been investigated to various degrees and are discussed below.

A few R proteins do not fit into these five classes (Table 1). Hm1 is a toxin
reductase that confers resistance to a fungal pathogen of maize (86). Mlo in barley
is an apparent membrane protein for which recessive mutant alleles confer resis-
tance to powdery mildew, and may be a negative regulator of defense responses
(27). RPW8 confers resistance inArabidopsisto powdery mildew in a non-race-
specific way (200). Other R proteins may act in specific recognition, but have
novel structures. For example, Hs1pro1 for resistance to a sugar beet nematode has
a structure without obvious protein interaction domains (28). The Ve proteins for
resistance toVerticillium in tomato are putative cell-surface glycoproteins with
receptor-mediated endocytosis-like signals (90). RTM1 and RTM2 restrict sys-
temic movement of tobacco etch potyvirus in resistantArabidopsisecotypes and
display jacalin-like sequences and similarity to a small heat shock–like protein,
respectively (36, 199). RRS1-R is a TIR-NBS-LRR protein, but is unusual in that
it provides strain-nonspecific resistance toRalstonia solanacearum, is recessive
genetically, and contains in its C terminus a putative nuclear localization signal and
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a 60–amino acid motif characteristic of the WRKY family of plant transcriptional
activator proteins (46). Recently, the Rpg1 protein for resistance to barley stem
rust was found to contain two tandem protein kinase domains and a predicted weak
transmembrane domain (25). In this chapter, we generally limit our discussion to
members of the five well-characterized classes described above.

Model Plant-Pathogen Systems for Studying
R Protein Function

The use of model plant-pathogen systems has greatly accelerated the cloning and
characterization ofRgenes. Because of the experimental tractability ofArabidop-
sis, the majority ofRgenes has been isolated from that species (Table 1). However,
manyR genes also have been isolated from solanaceous species (tomato, potato,
pepper, and tobacco), and from barley, rice, and flax. These species have long
histories of research on the genetics of their pathogen interactions, which has fa-
cilitated the cloning of theirR genes. The importance of using a broad range of
plant species for this research is evident from the fact that, to date, noR genes
have been cloned fromArabidopsisthat fall into the Pto, Cf, or Xa21 classes.
Clear homologs of each of these genes are present inArabidopsis, however, and
it is possible that some will be found to function in resistance [e.g., FLS2 from
Arabidopsis, although not an R protein, resembles Xa21 and plays a role in recog-
nition of bacterial flagellin (64)]. There has been a clear bias toward dicot species
and only a fewRgenes have been cloned from monocots [Xa21, Rpg1, Mla series
(25, 71, 168, 207, 209)]. Interestingly, analysis of plant EST databases revealed
that monocots do not have obvious TIR-NBS-LRR-like proteins (116, 129) and,
if true (see below), this suggests there might be some fundamental differences in
resistance mechanisms between dicots and monocots. In the future, studies using
different plant species to compare R proteins and the components of their sig-
naling pathways are likely to play an even greater role in understanding disease
resistance. In addition, because structural similarities exist among R proteins and
certain animal proteins with roles in immunity or development there is likely to
be cross-feeding of knowledge gained from nonplant systems (38, 77, 124, 169).

R genes appear to have evolved under diversifying selection by a variety of
genetic mechanisms. These have been reviewed recently (13, 53, 78, 187, 204).
For several studied R loci, greater similarity among orthologs in different species
than among paralogs at the same locus in one species suggests an ancient origin
(13, 143, 188). SeveralRgenes tested function transgenically within plant families,
but only rarely across major taxonomic groups (176, 189). Analysis ofRgene–like
sequences in theArabidopsisgenome indicates that they are abundant, comprising
an estimated 1% of the total genes (116), although the total number still is presum-
ably far smaller than the number of potential pathogens. This observation suggests
that theR genes may represent a pool for rapid development of new specificities,
or that some have multiple specificities (see below).

In the past ten years over 40Rgenes have been cloned, and many labs are now
focused on functional characterization of R proteins. In this review, we discuss
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recent developments in understanding the roles of R proteins in pathogen recog-
nition and signal transduction. We begin with a brief discussion of the revealing
characteristics of pathogen effector proteins that R proteins recognize.

PATHOGEN EFFECTOR PROTEINS

Effectors as Virulence and Avirulence Proteins

Features of pathogen effector proteins can provide clues to understanding the
functions of R proteins. We use the term effector here to refer to pathogen proteins
that are presented to the plant cell during infection. These proteins probably evolved
to facilitate the pathogen life cycle and are thus virulence factors. In those cases
where expression of a particular effector in a normally virulent pathogen strain
causes the pathogen to be recognized by a host R protein the effector is referred to
as an avirulence protein (107). Excellent recent reviews discussing general aspects
of pathogen effectors are available (21, 40, 96, 198). Here we focus on aspects of
the proteins that shed light on R protein function.

Effector Diversity

Single peptides, and in some cases subregions of those peptides, which play a role
in recognition by R proteins, have been characterized in pathogenic viruses, bacte-
ria, and fungi and their presence is suspected in nematodes and even some insects.
Based on their sequences, pathogen effectors are extremely diverse and defy any
simple classification scheme. For example, in different viruses either the replicase,
the coat protein, or the movement protein have been found to function as recog-
nition determinants for R proteins (55, 111, 128, 173). In fungi, diverse effectors
have been identified from several species and, although none have proven biochem-
ical activities, AVR-Pita fromMagnaporthe griseais a putative metalloprotease
(126). Known fungal effectors include a large number of sequence-unrelated pro-
teins from the tomato pathogenCladosporium fulvum(106). EachCladosporium
protein, however, has an even number of cysteines of which some might form disul-
fide bridges to stabilize their structure and allow recognition by the corresponding
R protein (106). Among bacteria, there is a growing list of over 40 diverse effectors
identified both from screens for proteins that are delivered by the type III secretion
system (TTSS) and from bioinformatics approaches relying on their characteristic
“hrp box” promoter element or their putative secretion signal (60, 70, 134). Most
bacterial effectors have no obvious biochemical activity or phenotypic effects on
plants lacking a corresponding R protein. R proteins, therefore, collectively rec-
ognize an extraordinarily diverse array of pathogen effector proteins.

Functional Studies of Bacterial Effectors

The fact that pathogens betray their presence to the plant by expressing avirulence
proteins was always puzzling but now many bacterial effectors are known to have a
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(probably primary) role in promoting virulence (7, 19, 32, 34, 162, 182, 198). This
virulence activity for most bacterial effectors is likely exerted from within the plant
cell (35) and might involve several, not mutually exclusive, mechanisms including
inhibition of host defense responses, masking of other avr genes, or increasing
access to host nutrients (2, 35, 80, 110, 182).

Studies of effector virulence activity are apt to shed light on the function of
R proteins because protein motifs required for virulence are often also involved
in avirulence. For example, myristylation of AvrPto and AvrRpm1 targets these
proteins to the plasma membrane and this localization is required for both avir-
ulence and virulence (123, 163). Thus, it is likely that recognition of these ef-
fectors by their matching R proteins, Pto and RPM1, respectively, occurs at the
plasma membrane. Similarly, cysteine protease activity of different members of the
AvrPphB/YopT family is required, in one instance, for recognition by a cognate
R protein (RPS5) in plants and, in another, for virulence in a mammalian system
(164). Thus, AvrPphB-mediated proteolysis of the RPS5 protein or, more likely,
the PBS1 protein kinase that is required for RPS5 resistance may be involved
in effector recognition. For members of the AvrBs3 family, both avirulence and
virulence activity depend on a nuclear localization sequence and a transcriptional
activation domain (171, 201). In addition, AvrXa7, an AvrBs3 family member,
binds double-stranded DNA. These observations suggest that recognition of these
effectors by cognate R proteins occurs in the plant nucleus and may involve in-
teraction with host transcriptional activation machinery. The many observations
that common motifs are involved in both avirulence and virulence activity suggest
that R proteins have evolved to recognize regions of effectors in which mutations
might lower their contribution to pathogen fitness. In fact, a recent study supports
the notion that the degree of fitness loss due to mutations in avirulence proteins
can be used to predict the durability ofR genes (7, 98, 191). An exception to the
correlation of virulence and avirulence activities has been observed with AvrPto.
Mutations that disrupt recognition of this protein by Pto do not affect its virulence
activity in laboratory and greenhouse studies (162).Pto has been exceptionally
durable, however, and it is possible that such mutations in AvrPto are deleteri-
ous under field conditions. To date, resistance-breaking strains characterized have
included only those having undergone complete deletion of AvrPto (S. Hirano,
personal communication).

ROLE OF R PROTEINS IN EFFECTOR RECOGNITION

Structural Motifs in R Proteins for Effector Recognition

Table 1 lists known R proteins grouped into the major classes described above. The
great majority are intracellular NBS-LRR proteins, with either a CC (class 2) or
TIR (class 3) domain at the N terminus. The few membrane-spanning proteins have
extracellular LRR domains, no NBS, TIR, or CC motifs, and either a short intra-
cellular region without known motifs(class 4) or an intracellular serine/threonine
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protein kinase (STK) domain (Xa21, class 5). Pto (class 1), an intracellular STK,
solely represents the only well-studied class that lacks an LRR, and its function
requires the CC-NBS-LRR protein Prf (155). Thus, R proteins in the five major
classes rely on a limited number of structural and functional domains, of which
the LRR appears to play a central role.

THE LRR DOMAIN Present in many proteins of diverse function, the LRR is im-
plicated in protein-protein interactions. A short stretch of amino acid residues with
leucine at every second or third position is repeated to form a flexible, solvent-
exposed, parallel beta-sheet. Domain swaps among alleles of theL andP genes in
flax support a role for the LRR as a major determinant of recognition specificity
(51, 54), and an LRR-like domain of at least one R protein interacts directly with
its cognate effector (83). But TIR and NBS comparisons and domain swaps among
alleles of L showed that these regions also contribute to specificity, suggesting that
interactions of the LRR and these regions might be involved (105). Xa21D is an
Xa21 family member that lacks the transmembrane and kinase domains. Although
it confers a lower level of resistance, it retains the functional specificity of Xa21
(193). Potentially secreted, it may participate in an effector-dependent heterodimer
with another, membrane-spanning Xa21 family member via conserved residues in
the LRR, a model similar to that proposed for the Cf proteins, which lack obvious
intracellular signaling domains (50). Replacing the extracellular LRR of Xa21 with
that of BRI1, a receptor-like kinase involved in brassinosteroid perception, yielded
a brassinosteroid-inducible plant defense response in rice cells, further supporting
a role for the LRR in signal recognition (73). Extensive mutational analyses of a
few R proteins identified several essential residues in the LRR, but also overall
a high degree of tolerance for substitutions. This observation is consistent with
a role for the LRR in recognition, as this property would be important for the
evolution of new specificities (5, 47, 179). In addition to recognition, several stud-
ies suggest roles for the LRR in signaling. A point mutation in the LRR of RPS5
compromises the function of different, structurally related R proteins, suggesting a
dominant negative interaction with a shared signaling component (195). The func-
tion of alleles of RPS2 from different ecotypes depends on the genetic background
in which they are expressed, and this dependence is determined by polymorphism
at six residues in the LRR, suggesting that the LRR may interact with other host
factors that are also polymorphic among ecotypes (9). Reciprocal swaps between
Mi-1 and a paralogous gene, involving the LRR domain and a 161–amino acid
N-terminal region, resulted in loss of function or lethality in different chimeras.
Lethality of an Mi-1 chimera containing the paralogous LRR was suppressed (in a
transient assay) by coexpression of the 161–amino acid N terminus of Mi-1. This
study suggests a role for the LRR in signaling cell death that is controlled by an
intramolecular interaction with the N terminus (79).

THE NBS REGION Mutational analyses indicate a critical role for the NBS re-
gion (5, 47, 155, 179). Present in several protein families, including ATPases and
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G proteins, the NBS may affect R protein function through nucleotide binding or
hydrolysis, although to date these properties have not been reported for any R pro-
tein. Several R proteins align over a roughly 320–amino acid region comprising the
NBS, with the APAF-1 and CED-4 proteins involved in regulating programmed
cell death in animals (184). In addition to the kinase 1a, 2, and 3a domains that
make up the NBS, the alignment contains five other short motifs of undefined
function and was designated the NB-ARC (nucleotide binding in APAF-1, R gene
products, and CED-4) domain. The functional relevance of the alignment has not
yet been determined, but it was suggested that R proteins may control plant cell
death by virtue of the NB-ARC domain, activated via LRR-dependent recogni-
tion of the pathogen (184). Structure predictions based on threading onto known
structures suggest that the NB-ARC domain might be involved in ATP-dependent
oligomerization (81) or, surprisingly, histidine-aspartic acid phosphotransfer with-
out nucleotide binding (144).

THE CC MOTIF The CC structure is a repeated heptad sequence with interspersed
hydrophobic amino acid residues, of which the leucine zipper is one example. It
consists of two or more alpha helices that interact to form a supercoil, is found in
a variety of proteins involved in different biological processes, and is implicated
in protein-protein interactions, including oligomerization, and oligomerization-
dependent nucleic acid binding. The role(s) of the CC domain in resistance re-
mains to be unraveled, but general dependence of CC-containing R proteins in
Arabidopsison downstream signaling components distinct from those required for
TIR-NBS-LRR proteins (see below) suggests that this domain may be involved in
signaling rather than in recognition (1, 183, 196).

THE TIR DOMAIN The TIR domain is implicated in signaling by its similarity to
the cytoplasmic domain of Toll and IL-1R, and by the requirement for distinct
downstream components cited above for the CC motif. Also, amino acid residues
conserved among the animal and plant protein domains and essential for Toll and
IL-1R signaling are also critical for the function of theN gene; deletion and point
mutations lead to partial loss-of-function alleles or dominant negative alleles (47).
In addition to signaling, the TIR domain can play a role in pathogen recognition
as well, as shown by comparisons and domain swaps among alleles at theL locus,
cited above. Initial searches of plant EST databases suggested that monocots do
not have TIR-NBS-LRR-like proteins (116, 129). However, a recent search using
a modified hidden Markov model has yielded a candidate TIR-domain-containing
protein on chromosome 1 of rice. The protein has an NB-ARC domain, but lacks
a typical LRR. It is located in a region containing a number of R gene homologs
and near a known R locus, but whether it functions in disease resistance is not
yet known. The protein may represent a previously undetected subfamily shared
by monocots and dicots, or an ancient fold that has diverged significantly in the
monocots (K. Sjolander, personal communication).



3 Apr 2003 9:57 AR AR184-PP54-02.tex AR184-PP54-02.sgm LaTeX2e(2002/01/18)P1: FHD

32 MARTIN ¥ BOGDANOVE ¥ SESSA

THE STK DOMAIN Both Pto and the kinase domain of Xa21 are functional STKs
(101, 159). Activity and specifically autophosphorylation of Pto is required for re-
sistance (141, 159). Pto interacts directly with its cognate effector, AvrPto
(158, 175), and with several plant proteins, of which some are also substrates of Pto,
including another STK and a family of transcriptional activators (20, 69, 208, 209).
The biochemistry, cell biology, and evolution of Pto recognition of AvrPto and ini-
tiation of defense responses have been studied extensively and reviewed recently
(18, 161). The discussion here is limited to a few key findings and some recent
results. Further discussion is included in the second half of this review. T204 in
the activation domain of Pto is required for specific interaction with AvrPto. This
residue is conserved in a number of STKs, but is absent from nonfunctional pto al-
leles or closely related family members, and is not subject to autophosphorylation
in vitro (159). A substitution of aspartic acid at residue 207 yields a constitutively
active allele, Pto(Y207D), that is dependent on Prf, but not AvrPto (141).

Pto is a member of a small family of kinases in tomato, of which some be-
side Pto are active and may function as R proteins. At least one of these interacts
functionally with AvrPto when transiently overexpressed and may confer a weak
resistance that is observed in a “susceptible” haplotype, relative to the complete
susceptibility of aprf null plant (33). Several family members show a Pto(Y207D)-
like gain-of-function (cell death) phenotype when the Y207D equivalent mutation
is introduced, and this gain of function is dependent on Prf, indicating a shared
signaling mechanism. Pto overexpression also triggers defense responses inde-
pendent of AvrPto, but dependent on Prf (X. Tang, personal communication). The
overexpression and Pto(Y207D) phenotypes shed light on the possible molecular
mechanisms by which Pto recognizes and signals response to AvrPto, and these
are discussed further below. Pto was recently shown also to interact functionally
with another bacterial effector, distinct from AvrPto (91).

OTHER MOTIFS AND IMPORTANT STRUCTURES Pto contains a myristylation motif
that is not required for AvrPto recognition when Pto is expressed from a strong
promoter in transgenic plants (104), but is required for the AvrPto-independent
Pto(Y207D) and Pto overexpression phenotypes (X. Tang, L. Shan, B. Riely &
G.B.M., unpublished results). Covalent attachment of myristic acid to the N-
terminal motif targets a protein to the membrane. It has not been determined
whether Pto is myristylated or membrane localized during recognition, but AvrPto
shares and requires the myristylation motif, localizes to the membrane, and is post-
translationally myristylated in vitro (163) (A.J.B. & G.B.M., unpublished results).
Several other bacterial effector proteins also appear to depend on myristylation in
the plant cell for membrane localization and function (123) and notably, the cog-
nate R protein of two of these, RPM1, also localizes to the membrane (23). These
observations suggest that at least for some bacterial effectors and their cognate
R proteins, recognition and signaling may occur at the plant plasma membrane,
and the myristylation motif may play an important role in localization of one or
more of the proteins involved. A roughly 150–amino acid region of RPM1 between
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the CC and NBS domains, without similarity to known motifs, is essential for its
interaction with the RIN4 protein (110). Also, the Hero protein contains an acidic
CC that may contribute to recognition. This motif is encoded by an unusual hexa-
nucleotide microsatellite between two repeats of its LRR coding region (56). One
of the short motifs within the NB-ARC domain, GLPLAL, is particularly highly
conserved among R proteins and is used often to PCR amplify R gene homologs,
but its function is unknown.

Multiple Recognition Specificities of Some R Proteins

The most straightforward prediction of the gene-for-gene model is that single
R proteins recognize single pathogen avirulence proteins. Some R proteins, how-
ever, recognize more than one pathogen signal. RPM1 and Pto each recognize
different pairs of structurally distinct effectors from the same or related bacteria.
RPM1 recognizes AvrB and AvrRpm1 (14). This recognition probably involves
a third protein (possibly RIN4, 110), because no direct interaction of RPM1 and
either effector protein has been observed. Pto recognizes AvrPto and a newly dis-
covered protein from the same pathogen, AvrPtoB, which is three times the mass of
AvrPto (91). The effectors in this case have very short regions of similar sequence
and at least one of these appears to play a role in interaction with Pto. AvrPtoB also
interacts with an AvrPto-interacting member of the Pto family isolated from a wild
species of tomato,Lycopersicon hirsutum. These observations suggest that there
has been selection inLycopersiconspp. over a long period of time for Pto-like
kinases that specifically recognize a conserved feature present in both the AvrPto
and AvrPtoB proteins (143).

Mi-1 confers resistance to a nematode and to an aphid pest, indicating that it
recognizes a signal from each. Some R loci show dual specificity accounted for
by tightly linked, nearly identical genes. Examples includeHRT and RPP8of
Arabidopsis, andGpa2andRx1of potato (see Table 1). Nevertheless, dual (and
perhaps even multiple) recognition specificity for single R proteins may prove to be
common. It would provide some genomic and physiological economy for plants,
which are faced with perhaps thousands of potential pathogens. Supporting this
idea is the observation that theArabidopsisgenome encodes only a few hundred
potential members of the five major classes of R proteins (85 TIR-NBS-LRR
proteins, 36 CC-NBS-LRR proteins, 15 Ser/Thr kinases with>50% identity to
Pto, 174 Xa21-like proteins, and 30 Cf-like proteins) (3). The studies of AvrPto
and AvrPtoB suggest that common structural motifs embedded within diverse
pathogen proteins, likely related to their virulence activity, might account for the
limited number ofRgenes.

R Proteins as Members of Multiprotein
Recognition Complexes

Physical interaction between R protein and effector has been demonstrated only
for Pto with AvrPto or AvrPtoB (91, 158, 175), Pi-ta with AVR-Pita (83), and RPS2
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with AvrRpt2 or, puzzlingly, with the noncognate effector AvrB (99). Due largely
to the research community’s failure to detect direct interaction with effectors for
most R proteins, multiprotein recognition complexes were suspected. This idea is
supported not only by the dual requirement of Prf and Pto for AvrPto recognition,
but also by the recent identification of other likely participants in recognition
complexes, including other kinases.

There is no evidence for a direct Prf-AvrPto interaction that would indicate its
participation in a recognition complex, but recent evidence places Prf very early
in the Pto-mediated resistance pathway.Prf overexpression activates defense re-
sponses in the absence of AvrPto and this activity requires Pto (125; G. Oldroyd
& B. Staskawicz, personal communication). Overexpression of Pto (100; X. Tang,
personal communication), or expression of Pto (Y207D) (141), similarly results
in AvrPto-independent defense and requires Prf. These observations are consis-
tent with a model (among others, see below) in which a Prf and Pto interaction,
enhanced by AvrPto in a recognition complex, drives defense. Overexpression of
either could obviate the need for AvrPto. Gene-expression profiling has revealed
that regulation of over 95% of more than 400 genes differentially expressed within
four hours following inoculation with a bacterial strain expressing AvrPto required
both Pto and Prf, further supporting an early role for Prf (122).

Xa21 combines an LRR with a kinase domain similar to that of Pto (168), sug-
gesting that NBS-LRR proteins might each physically associate with a Pto-like
kinase (or redundant kinases, which would explain why so few have been identi-
fied in genetic screens). RPS5 requires the PBS1 kinase (170), but an interaction
has not been demonstrated, and unlike Pto, PBS1 has not been observed to inter-
act with the cognate effector, AvrPphB. PBS1 belongs to a subfamily of kinases
distinct from Pto, with no other members of known function, and may function
differently from Pto in pathogen recognition. RIN4 (110), a protein with no known
motifs that is required for RPM1 function, is phosphorylated following delivery of
AvrB or AvrRpm1 into the plant cell. RIN4 interacts with RPM1 and with either
of its cognate effectors, AvrB and AvrRpm1. All of these proteins localize to the
membrane fraction (23, 110, 123). RIN4 therefore may participate in recognition
complexes involving RPM1, which might assemble due to, or might include, a ki-
nase. Although these observations point to important roles for kinases in pathogen
recognition, the functional connection(s) between NBS-LRR proteins and kinases
remain to be discerned.

Other putative components of recognition complexes have been suggested by
several studies. The Pi-ta and AVR-Pita interaction demonstrated using the LRR-
like domain in the yeast two-hybrid system loses specificity when tested with
full-length protein in vitro, such that Pi-ta interacts also with a nonfunctional
AVR-Pita allele from a virulent strain of the pathogen. This in vitro interaction
suggests that specificity in the plant cell might be maintained through interaction of
the N-terminal portion of Pi-ta with another protein that would preclude interaction
with the virulent AVR-Pita176 allele. RPS2 interaction with AvrRpt2 was demon-
strated by coimmunoprecipitation from protoplasts, but could not be demonstrated
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in vitro using purified proteins, suggesting that one or more other binding part-
ners present in the cell is required. Curiously, RPS2 coimmunoprecipitates also
with the noncognate effector AvrB, demonstrating that R-Avr protein interaction
alone does not account for specificity in this system, and again suggesting a role
for at least one additional protein. P75, a protein that coprecipitates with RPS2
irrespective of the presence of an effector, is an important candidate that awaits
further characterization (99). In HRT-mediated resistance toTurnip crinkle virus
(TCV), the viral coat protein (CP) is the effector and appears to require interaction
with TIP (TCV-interacting protein), a member of the NAC-family of proteins that
are important in development. TIP message, however, is identical and expressed
the same in both resistant and susceptible lines, supporting the idea that interac-
tion of the CP-TIP complex with yet another protein, presumably HRT, triggers
resistance (142). Cf-9 and Avr9 were shown not to interact in a variety of sophis-
ticated binding assays (108). A high-affinity binding site (HABS) for Avr9 exists,
however, in near-isogenic lines both with and without Cf-9, as well as in tobacco
and other solanaceous plants (93). The affinity of HABS for various Avr9 alleles
correlated with allele function, suggesting a required role in Cf-9-mediated recog-
nition (94). A yeast three-hybrid screen identified candidate proteins involved in
recognition of AvrPto (20). These AvrPto-dependent Pto interactors (Adis) inter-
act with Pto only in the presence of AvrPto. This property suggests a potentially
direct role in recognition, but confirmation has not yet been obtained. Affinity pu-
rification and gel filtration revealed participation of Cf-4 and Cf-9 in 400-kD and
420-kD protein complexes, respectively, that appear to contain other glycoproteins
(145, 146).

Mutant screens for suppressors of R gene function have revealed additional
genes whose products might participate in recognition. TheRcr3 gene product
(95) is required specifically for Cf-2 (and not Cf-9) function. It is a secreted cys-
teine protease. A Cf-2 and Cf-9 chimera containing the extracellular LRR region
only of Cf-2 requires Rcr3, indicating that the requirement involves the LRR. An
attractive hypothesis is that Cf-2 recognizes a complex of Avr2 and Rcr3.Rcr3was
also determined to be theNegene, a suppressor for Cf-2-dependent autonecrosis
cointrogressed from wild tomato, and its corresponding allele in cultivated tomato
(Rcresc) leads to Avr2-independent, Cf-2-dependent autonecrosis when its product,
which is developmentally regulated, accumulates in mature plants. This observa-
tion is reminiscent of Pto(Y207D)-mediated AvrPto-independent, Prf-dependent
autonecrosis and may indicate that Rcrescmimics an Avr2-dependent conforma-
tion of Rcr3/Ne that is recognized by Cf-2. Recognition may require processing of
Avr2, Cf-2, or another protein by Rcr3. Processing of Avr2 alone would not likely
be the only role for Rcr3, however, because Avr2 isolated from infected plants (and
presumably processed) does not elicit defense in an rcr3 mutant (95). Mutations at
theRmelocus of tomato (43) specifically suppress Mi-1 function both in nematode
and potato aphid resistance, indicating thatRmeencodes a shared component of
these Mi-1 mediated pathways. Mi-1 most closely resembles Prf. Whether Rme is
akin to Pto awaits cloning of the gene.
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R Protein Localization

In addition to the direct physical interactions that have been demonstrated (83, 91,
99, 158, 175), and the observation that RPM1 and its cognate effectors all associate
with the plasma membrane (123), several considerations suggest that R proteins
in general colocalize with pathogen effectors. Viral effectors are present inside
the plant cell, and the predicted structures of all known R proteins against viruses
indicate that they are also intracellular. Avr9 and otherCladosporium fulvumef-
fector proteins are found in the plant extracellular space (96), and the LRRs of
the Cf proteins are predicted to be extracellular. The HABS for Avr9 is located on
the plasma membrane, and as discussed above, recognition of Avr9 may involve a
three-way interaction on the plant cell surface among Avr9, the HABS, and Cf-9
(93). The AVR-Pita protein ofMagnaporthe grisea, an extracellular pathogen,
was shown to function when expressed in the plant cell, suggesting that it may
be delivered into the plant cell during infection (83). Concordantly, Pi-ta, with
which it is known to interact physically, is a class 2 (intracellular) R protein. All
bacteria-directed R proteins appear to be intracellular, except Xa21. A number of
bacterial effector proteins were shown to function when expressed within the plant
cell, and the predicted localization of the corresponding R proteins lent weight to
the conclusion, now cemented with direct evidence (29, 84, 171a), that these pro-
teins localize inside plant cells following secretion through the bacterial type III
secretion system–encoded Hrp pilus. The effector corresponding to Xa21 has not
yet been identified, although it appears that it might be a sulphated protein secreted
to the apoplast through a type II secretion system, where it could interact with the
extracellular LRR portion of Xa21 (165).

Given these observations, determining the virulence targets of effectors may in
many cases be an important first step toward localizing corresponding R proteins.
This concept is supported by examples discussed earlier, i.e., the requirement for
AvrPto and AvrRpm1 to localize to the plasma membrane for both virulence and
avirulence activity, and observations suggesting that AvrXa7 virulence activity
and Xa7-mediated recognition both take place in the nucleus. It is important to
consider also that localization of the R protein could depend on the effector, such
that R proteins that recognize more than one effector may localize to more than one
subcellular location. This may be the case for Pto, which interacts with AvrPto and
AvrPtoB. Unlike AvrPto, AvrPtoB lacks a myristylation motif and is predicted to
be in the cytoplasm. Pto may be recruited to the membrane when it interacts with
AvrPto, or localize in the cytoplasm upon interaction with AvrPtoB. Translocation
of some R proteins during signaling might take place as well. Further biochemical
and histochemical studies are required to explore these possibilities.

Models of R Protein Recognition Complexes

Despite some key breakthroughs, for several reasons progress toward understand-
ing how R proteins function has been slower than might have been anticipated.
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Because of their low abundance in the plant cell [and in at least some cases rapid
degradation upon effector recognition (23)] many R proteins have proven diffi-
cult to study biochemically. Perhaps because of their structural complexity, LRR
proteins have been recalcitrant to yeast two-hybrid analyses and other protein-
protein interaction screens and this has limited the number of potential partner
proteins that have been identified (77, 110). The lack of direct interaction between
R proteins and most of their corresponding effectors has made it apparent that
multiprotein receptor complexes are probably involved in pathogen recognition,
and sophisticated biochemical analyses will be needed to characterize these com-
plexes [e.g., (108)]. Some biochemical studies of R proteins are being reported
and are allowing characterization of new components required for R protein func-
tion (23, 77, 99, 110). The patterns of protein-protein interactions that occur during
R protein–mediated recognition of effectors, however, remain largely unknown.

An important and influential model for these interactions was conceived based
on the dual requirement of Prf and Pto for AvrPto-triggered resistance, and was
designated as the “guard” hypothesis (185). In this model, the effector (AvrPto)
targets a plant protein (Pto) to promote disease (it was proposed that binding of
AvrPto disrupts an interaction of Pto with other proteins that normally maintains a
basal level of defense), and the R protein (Prf) guards against effector attack by rec-
ognizing the effector-target complex and activating defense responses. A variation
was proposed in which recognition occurs when an effector-induced conforma-
tional change in the target protein disrupts a constitutive interaction of that protein
with the guard (42). Recent observations have suggested yet other versions, in-
cluding recognition of effector and target interaction following effector-dependent
phosphorylation of the target (110), or following proteolytic processing of the
target by the effector (164). The essential concept behind the several mechanistic
variations of the guard model is that recognition of an effector takes place indi-
rectly as recognition of an interaction of that effector with a target of its virulence
function. In the absence of the guard, interaction of the effector and its target in
some way downregulates plant defense, aids in releasing nutrients to the apoplast,
or otherwise contributes to pathogenesis. In those plant-pathogen systems where
evidence suggests a guard model might apply, therefore, the identification of host
targets of virulence factors may uncover new members of R protein recognition
complexes (20, 77, 99, 110).

For Pto-mediated resistance, evidence has accrued indicating that the guard
model originally proposed does not apply, and that the interaction of AvrPto with
Pto is directly involved in defense response elicitation and distinct from AvrPto
virulence activity [for a detailed discussion, see (17)]. This evidence includes
the observations, among others, that AvrPto virulence function is evident even in
the absence of Pto (32, 162), that some AvrPto mutants that do not interact with
Pto fail to elicit defense but retain virulence function (162), that AvrPto interacts
with potential virulence targets distinct from Pto (20), and that some candidate
downstream signaling components interact with Pto only in the presence of AvrPto
(20). Participation of Prf in a receptor complex with Pto and AvrPto is possible,
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even likely (see below), but Pto does not appear to be a virulence target of AvrPto
guarded by Prf.

Figure 1 depicts several possible patterns of protein-protein interactions that
could account for Pto or other R protein–mediated recognition of effector proteins.
Some of these models are consistent with a role for R proteins as guards; others
clearly are not. Evidence for and against each model is given below.

RECEPTOR-LIGAND In this model, which is the simplest interpretation of the gene-
for-gene hypothesis, R protein and Avr protein interact directly and activate de-
fense. In support of this model, Pto and Pi-ta interact directly with their respective
effectors, and there are several examples of additional plant proteins required for
resistance that may function downstream of recognition (110, 125, 170). However,
interaction with an effector has not been demonstrable for the majority of R pro-
teins. In at least one exhaustive study, the lack of evidence for an interaction seems
convincing enough to reject this model for that system (108). Applicability of this
model to a system would depend on some evidence, either biochemical or genetic
(e.g., through identification of correlative suppressor mutations), that the R and Avr
proteins interact directly, and that other required proteins function downstream.
The model could be consistent with the guard hypothesis if the guard detects a
cellular perturbation downstream of the interaction of effector and target.

BRIDGE In this model, the effector binds independently to the R protein and to
a third protein, recruiting one to the other. The effector-dependent interaction of
these two proteins activates downstream signaling for defense. In support of this
model are the R proteins that have been shown to interact directly with effector(s)
(Pto, Pi-ta, RPS2), and the growing number of examples of third proteins required
for resistance (Prf, PBS1, TIP, RIN4, Rcr3, and possibly Rme and p75). Coun-
tering this model at least for Pto-mediated resistance are the observations that
expression of the constitutively active mutant Pto(Y207D) or overexpression of
Pto activates defense in a Prf-dependent fashion, in the absence of AvrPto. Like-
wise, Prf overexpression confers resistance dependent on Pto, but independent of
AvrPto (G. Oldroyd & B. Staskawicz, personal communication). AvrPto, there-
fore, likely does not play the role of a bridge between Pto and Prf. For confirmation
of this model in a recognition system, evidence is needed to show that the effector
interacts with both plant proteins by means of distinct domains. In the absence of
a demonstrable interaction for one or the other, identification of mutations in the
effector that do not affect the observable interaction yet destroy avirulence function
would support this model. The model, strictly speaking, is conceptually distinct
from a guard model because both plant proteins interact directly and independently
with the effector and interact only indirectly (or perhaps not at all) with each other.

MATCHMAKER In this model, the effector induces a direct interaction between
the R protein and a third protein by causing a conformational change in one
or the other, or both. The effector may or may not remain associated with the
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complex following binding of the two plant proteins. In favor of this model is
the evidence cited above for the bridge model. Also consistent is the observation
that Pto(Y207D) activates defense, as it could be mimicking an AvrPto-induced
conformation. The identification of Rcresc asne could also support this model,
assuming its conformation mimics that of an effector-modulated Rcr3 protein, as
discussed above. The AvrPto-independent overexpression phenotypes for Prf and
Pto are not consistent with this model, because the model proposes a requirement of
AvrPto for interaction of the two plant proteins. Biochemical and genetic (through
mutational analysis) evidence of an effector-dependent association of the two plant
proteins would be needed to support this model for a particular system. This pattern
of interactions could be a guard model if the third protein were a virulence target
of the effector.

AFFINITY ENHANCEMENT In this model, interaction of the effector with the R pro-
tein, a third protein, or both, stabilizes a pre-existing, weak interaction between the
two plant proteins such that abundance of the complex increases and drives down-
stream signaling to activate the induced defense response. Steady-state levels of
interaction between the two plant proteins may function to maintain basal defense.
Evidence cited in support of the bridge and matchmaker models also supports this
model. Significantly, Pto and Prf overexpression phenotypes are consistent with
this model, as increased concentrations of one or the other protein would drive
formation of the complex independent of AvrPto. Pto(Y207D) might mimic an
AvrPto-induced conformation of Pto, resulting in enhanced Pto-Prf interaction. To
date, however, no interaction whatsoever between Prf and Pto has been reported.
In RPM1-mediated defense, RIN4 interacts with RPM1, and with both cognate ef-
fectors, yet the observation that RIN4 functions genetically as a negative regulator
of basal defense suggests that the affinity enhancement model does not apply to
this system. Demonstration of interaction between the two plant proteins in the ab-
sence of the effector, and of enhancement of that interaction by the effector, perhaps
by carefully controlled coimmunoprecipitation experiments, would be required to
ascribe this model for recognition. The affinity enhancement pattern of protein-
protein interactions could be a guard model if one or the other plant protein is a
virulence target of the effector. Given the high degree of conservation of Prf across
species relative to Pto, and its role in both the Pto and Fen (Fen is a protein kinase
closely related to Pto) signaling pathways (154, 155), it is conceivable that Prf is a
target of AvrPto guarded by Pto. It could not be the only target, however, because
AvrPto virulence activity is quantifiable in the absence of functional Prf (32).

DEREPRESSION In this model, the effector derepresses defense responses by dis-
rupting an interaction of the R protein and a third protein that negatively regu-
lates activity of the R protein. Knowledge so far of RPM1-mediated resistance,
in which antisense suppression of the RPM1 interactor RIN4 results in enhanced
constitutive defense, provides an example consistent with this model. AvrB or
AvrRpm1 could disrupt the interaction between RIN4 and RPM1 and derepress
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RPM1 activity. In the Pto system, Pto(Y207D) could fail to interact with Prf in the
same way as an AvrPto-modulated Pto. So far, however, as mentioned, no binding
has been demonstrated between Prf and Pto, or between RPS5 and PBS1, Cf-2
and Rcr3, or HRT and TIP. And, of course, for many of these pairs, both proteins
are required for resistance, precluding negative regulatory roles. The constitutive
disease resistance conferred by overexpression of Pto or Prf also speaks against
this model. For this model to apply to a given system, the R protein and third pro-
tein must interact, and downregulation or mutagenesis of the third protein would
be expected to activate defense in the absence of the effector. As is true for the
matchmaker and affinity enhancement models, this could be a guard model if the
third protein were a target of the virulence function of the effector.

DUAL RECOGNITION This model, in which independent interactions between the
effector and theR gene and the effector and a third protein are both required
for resistance, is a formal possibility, supported at the very least by the dual re-
quirement of Pto and Prf, and the interaction of AvrPto and Pto. This type of
mechanism would be costly both in terms of structural evolutionary constraints
and physiology, and seems unlikely to be maintained without significant, frequent
disease pressure. Again, AvrPto and Prf interaction has not been demonstrated,
and the observed AvrPto-independent resistance resulting from overexpression of
either Prf or Pto would not be predicted from this model. If both plant proteins
in this model are strictly required, the signaling pathways originating from these
interactions would have to converge at some point downstream rather than each
contributing quantitatively to resistance. Demonstration of the interactions, and
genetic characterization of shared downstream components would be necessary to
adopt this model. This model is not a guard model.

Just as there is a level of structural diversity among R proteins, there is likely
to be diversity among the patterns of protein-protein interactions for recognition
in different systems. Multiple models almost certainly will apply, and different
mechanisms to bring about the plant protein-protein interactions are likely as
well. Some of these have been mentioned, and they might include effector-binding
induced conformational changes, effector-dependent phosphorylation, effector-
driven translocation or targeting, effector-dependent degradation (in the derepres-
sion model, for example), or proteolytic processing by or due to the effector.
Downstream signaling components will be distinct for many systems as well.
Several characterized examples of these are discussed in the following section.

SIGNAL TRANSDUCTION EVENTS
MEDIATED BY R PROTEINS

Loci Required for R Gene–Mediated Signaling

In the search for signaling components acting downstream ofR genes, extensive
genetic screens for mutants impaired inR gene–mediated resistance have been
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employed in several dicot and monocot species [e.g., (30, 43, 89, 121, 154, 180,
196)]. These screens have identified a limited number of loci required forR gene
signaling and in several instances led to the identification of the corresponding
genes (Table 2). Lethality, redundancy, and the existence of parallel and additive
pathways could account for the limited number of signaling components identified
to date.Rsignaling components differ in their capability to affect single or multiple
Rgene–mediated cascades. Genes required for the function of individualRgenes
may encode proteins that fulfill tasks in early events of pathogen recognition or in
signal transduction upstream or immediately downstream of pathogen recognition.
Representative of this group are the tomatoPrf,Rcr3, andRme1genes (43, 95, 155),
and theArabidopsis PBS1andRIN4genes (110, 170).

As discussed above, the tomato Prf protein appears to act in conjunction with Pto
in early signaling events of speck disease resistance (155). However, its function
in signal transduction is still unclear. A signaling role upstream of R-Avr recog-
nition has been proposed for the Rcr3 protease, which is specifically required for
resistance of tomato expressing theCf-2 gene toCladosporium fulvumexpress-
ing avr2 (95). Its extracellular localization and enzymatic activity suggest that
Rcr3 is likely to function in processing of molecules such as Avr2, Cf-2, or other
plant proteins before R-Avr protein recognition. TheRme1locus is required for
Mi-1–mediated resistance against root-knot nematodes and potato aphids (43). The
Rme1gene has not been isolated yet, however, and its potential role in signaling
remains unexplored.

A signal transduction function for theArabidopsis PBS1gene, which is specif-
ically required for resistance toP. syringaeexpressingavrPphB, is indicated by
the enzymatic properties of its encoded protein (196). PBS1 is a serine/threonine
kinase and it might act immediately downstream of pathogen recognition, as has
been proposed for the Pto interactor Pti1, which encodes a serine/threonine kinase
showing 50% identity to the PBS1 catalytic domain (170). However, it is also
possible that PBS1 is a virulence target for AvrPphB and the “guardee” of RPS5,
or an RPS5-modifying protein (170).

In the search forR gene–signaling components, protein-protein interaction
screens are particularly suited for the identification of proteins that might be essen-
tial for plant viability and cannot be isolated in suppressor screens (6, 77, 110, 208,
209). A yeast two-hybrid screen using as bait theP. syringaeeffector AvrB iden-
tified the ArabidopsisRIN4 protein, which is specifically required forRPM1-
mediated resistance (110). However, genetic and biochemical evidence strongly
suggests that RIN4 is involved in pathogen recognition rather than in signal
transduction.

Some signaling components are required for resistance conferred by multiple
R genes, and are thus proposed to function downstream of the initial pathogen
recognition event (Table 2). These can be divided into groups that affect classes
of R genes with common structural characteristics, includingEDS1(57), PAD4
(58), andNDR1(31), and those that are required for different classes ofR genes,
and includePBS3(196), PBS2/RAR1(89, 121, 166, 180),Rar2 (89), andSGT1
(4, 6, 178).
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TheArabidopsis EDS1andPAD4genes are specifically required for resistance
to P. syringaeandPeronospora parasiticaconditioned by the same spectrum of
TIR-NBS-LRRRgenes (58). These two genes, which encode lipase-like proteins
(57, 85), probably participate in the same signaling pathway and fulfill different sig-
nal transduction functions (1, 58). Interestingly, a subset of TIR-NBS-LRR genes,
includingRPP5, RPP1, andRPP4, is also affected by mutations in the systemic
acquired resistance (SAR)-associated geneNPR1/NIM1(139, 183). On the other
hand, theArabidopsis NDR1gene encodes a putative membrane-bound protein
required for resistance specified byRgenes of the CC-NBS-LRR class (1, 30).

In contrast toEDS1, PAD4, andNDR1, theRAR1, Rar2, SGT1, andPBS3loci
are required by distinct classes ofRgenes. BarleyRar1andRar2were identified in
a mutational screen for suppressors ofMla12-mediated resistance to the powdery
mildew fungusBlumeria graminisf. sp.hordei(89). TheArabidopsisortholog of
barleyRar1was identified in suppressor screens targeting theRPM1- andRPP5-
mediated resistance (121, 180). Interestingly, therar1 mutation was found to be
allelic to the previously describedpbs2 mutation, which suppressesRPS5disease
resistance toP. syringae(196).

Arabidopsis SGT1was identified in mutational analysis for loss ofRPP7- and
RPP5-mediated resistance (4, 178), and in a yeast two-hybrid screen as an RAR1
interactor (6). The RAR1-SGT1 physical interaction, their structural properties and
physical interactions with ubiquitination-related proteins, strongly suggest that the
two proteins are signaling components that may act in concert and are involved
in protein degradation processes (4, 6, 121, 166, 178, 180).Arabidopsis PBS3is an
additional locus required for resistance toP. syringaeandP. parasiticamediated
by multipleR genes (196). However thePBS3gene has not yet been isolated and
its role in signal transduction remains unknown.

Virus-induced gene silencing (VIGS) inNicotiana benthamianahas been suc-
cessfully used to test the involvement of several signaling components inN-gene
andPto-gene mediated disease resistance against TMV andP. syringaepv. tomato,
respectively (102, 103, 132; O. del Pozo, S. Ekengren, J. Van Eck & G. Martin,
unpublished data). In VIGS, a virus vector carrying a fragment of the host gene to
be tested is targeted against the corresponding host RNA. If the gene is required for
disease resistance the virus-infected plant becomes susceptible to the pathogen.
By using VIGS systems, tobacco homologues ofRar1, EDS1, NPR1/NIM1, SGT1,
SKP1, and subunits of the COP9 signalosome have been shown to be involved in
N-specified resistance to TMV (102, 103, 132). VIGS thus represents an excellent
system to assess the role of candidate signaling components in disease resistance
of Solanaceae. Moreover, high-throughput VIGS screens using cDNA libraries in
a virus vector will allow the identification of signaling components that, because of
lethality or redundancy, may not be identified in classical forward genetic screens.

Multiple Parallel and Interacting Pathways in R Gene Signaling

Structurally different R proteins trigger defense responses that are common to a
large array of plant-pathogen interactions. This observation raises the question of
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whether defense responses are triggered by parallel or by converging signaling
pathways originating from different recognition events. Alternatively, a network
of multiple interconnected signaling pathways acting in parallel might propagate
Rgene–mediated signals.

The different requirements ofR genes for downstream signaling components
imply that there are distinct signaling pathways leading to disease resistance. For
example, the structurally different RPM1 and RPS4 proteins, which confer re-
sistance against differentP. syringaestrains, clearly require distinct downstream
effectors (Table 2). In addition, even similarR genes were found to be dependent
for their function on distinct downstream components. This is the case for theMla1
andMla6barley genes, which, despite a high degree of homology and the capability
to trigger a very similar resistance phenotype, show a differential requirement for
theRar1, Rar2, andSGT1signaling components (6, 71, 156, 207). Similarly, the
function of the CC-NBS-TIRRPP13andRPP8is notNDR1-dependent, in contrast
with resistance mediated by other knownRPPgenes of the CC-NBS-LRR class
(15, 114). Additional evidence suggests that the sameRgene can use multiple par-
allel signaling pathways. For instance, in the analysis of the contribution ofRAR1
andNDR1to disease resistance mediated by severalRgenes, anrar1 ndr1double
mutant showed an additive phenotype with respect toRPP7 function, strongly
suggesting the existence of two pathways acting in parallel downstream ofRPP7
(180). Interestingly,RPP4-mediated resistance has a differential requirement for
signaling components in true leaves and cotyledons, indicating that the preferential
utilization of a certain pathway downstream toRPP4is developmentally regulated
(183).

In the signaling networks used byR genes and their downstream components,
there are pathways that converge into common elements, reinforcing the notion that
common pathways, which are parallel and interconnected, function downstream of
Rgenes. For example,RPS2, RPP4, andRPP5genes share a similar requirement
for EDS1, PAD4, andRAR1(Table 2). However,RPP4andRPP5differ fromRPS2
in their requirement forSGT1, suggesting the existence of interconnected rather
than linear pathways. TheNDR1gene represents a convergence point for cascades
specified byR genes of the CC-NBS-LRR class (1, 31), whereas theEDS1and
PAD4 genes are convergence points for pathways originating fromR genes of
the TIR-NBS-LRR class (1, 58).EDS1andPAD4 function in close proximity in
the signaling pathway, as the proteins they encode physically interact in vitro and
coimmunoprecipitate from plant extracts (58). However, they fulfill distinct roles
in resistance:EDS1is essential for the oxidative burst and HR elicitation, while
PAD4is required for phytoalexin, PR1, and SA accumulation (147, 153, 211). The
study of the requirement forNDR1andEDS1by the CC-NBS-LRRRgenesRPP7
andRPP8revealed that the utilization by a specificRgene of either anEDS1/PAD4
orNDR1pathway is not mutually exclusive (114). In fact, resistance toP. parasitica
conferred byRPP7orRPP8was not significantly suppressed by mutations in either
EDS1or NDR1, and was only partially suppressed ineds1/ndr1double mutants
(114). These results, together with the evidence that a slight reduction in resistance
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is observed in anndr1 background for certainEDS1-dependentR genes (1, 183),
suggest that certain pathways can operate additively throughEDS1, NDR1, and
additional unknown signaling components. Taken together, the emerging picture
is that R genes relay their signal through a complex network of additive and
interconnected pathways.

Roles of R Gene Signaling Components
in Other Plant Processes

One possible explanation for the limited number of signaling components identi-
fied in mutational screens is that certain genes might be required for both disease
resistance and other essential cellular processes. In several instances, morpho-
logical and developmental abnormalities are observed in plants having mutations
in R gene signaling components. This is the case for theArabidopsisRPM1-
and RPP5-interacting protein TIP49a, which is homologous to animal proteins
interacting with the TATA binding protein complex and modulating specific sig-
naling pathways (77). TIP49a was shown to be a negative regulator ofRPP2- and
RPP5-mediated resistance and to be required for meristem establishment, as well
as for sporophyte and female gametophyte viability (77). It is also possible that
Rgene–specified signaling pathways utilize cellular machinery shared by multiple
unrelated signaling pathways. This hypothesis is supported by the finding of pro-
tein complexes including the RAR1 and SGT1 proteins and subunits of the COP9
signalosome, which is involved in protein degradation and in several different
developmental processes (157).

NumerousArabidopsismutants showing activation of basal defense and mor-
phological abnormalities have been identified (63, 110, 133). Similarly to TIP49a,
the corresponding genes might function in both disease resistance and develop-
ment. Alternatively, constitutive activation of defense responses in these mutants
might shift cellular activity from rest to stress metabolism, causing impairment
of cellular functions and growth. The existence of dual roles for certainR gene
signaling components reinforces the need to adopt alternative and complementary
strategies to mutational screens in the dissection ofRgene–mediated pathways.

Protein Degradation in R Gene Signaling

An important role for protein degradation inRgene–mediated signaling is emerg-
ing from the characterization of the RAR1 and SGT1 proteins and their interaction
with components of the SCF (Skp1, Cullin, F-box) E3 ubiquitin ligase complex
and with subunits of the COP9 signalosome (4, 6, 103, 121, 166, 178, 180).

RAR1 encodes a cytoplasmic protein with two zinc-binding CHORDs (cysteine-
and histidine-rich domains), which are conserved in sequence and tandem organi-
zation among all eukaryotic phyla examined (121, 166, 180). In contrast to plant
RAR1, Drosophila, Caenorhabditis elegans, and human CHORD proteins con-
tain a C-terminal extension with sequence similarity to the yeast protein SGT1,
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which is essential for activation and assembly of the ubiquitin ligase SCF complex
(92). This complex mediates degradation of proteins involved in diverse signaling
pathways through a ubiquitin proteasome pathway (45). Interestingly, plant SGT1,
which is essential for severalRgene–mediated pathways, physically interacts with
RAR1 in yeast two-hybrid screens and in plant extracts (4, 6, 103, 178). In addition,
RAR1 and SGT1 from barley andN. benthamianaextracts coimmunoprecipitated
with components of the SCF complex and with subunits of the COP9 signalo-
some (6, 103). The COP9 multiprotein complex is involved in protein degradation
through the 26S proteasome, which directly interacts with SCF E3 ubiquitin lig-
ases (109, 157). Remarkably, suppression of the COP9 subunits CSN3 and CSN8,
and of the SCF subunit SKP1 leads to loss ofN-mediated disease resistance in
N. benthamiana(103). Despite the physical interaction observed for RAR1 and
SGT1, the requirements of differentRgenes for these proteins only partially over-
lap (4) (Table 2), indicating that they have both combined and distinct functions in
differentRgene–mediated signaling pathways. Taken together, these observations
point to a key involvement of protein degradation inRgene signaling pathways.

What is the role of ubiquitination and protein degradation in disease resistance?
A possible role is removal of negative regulators of plant defense responses. Can-
didate targets for degradation are products of genes whose mutations fall into
phenotypic classes of enhanced disease resistance (edr1), constitutive expression
of defense genes (cpr1), or lesions simulating disease (lsd) (63). Alternatively,
protein degradation might modulate R protein levels. In support of this possibility,
RPM1is rapidly degraded following RPM1-mediated activation of signaling (23);
however, the observation that RPM1 protein is undetectable inrar1 mutants cannot
be integrated into this scenario (179). Finally, the role of ubiquitination in disease
resistance could be to modify signal proteins and regulate cellular processes such
as transcription, protein trafficking, membrane transport, or activation of protein
kinases (135).

Phosphorylation in R Gene Signaling

ThePto, Xa21, andRpg1 Rgenes and severalR-mediated signaling components
encode protein kinases, suggesting a major role for phosphorylation inR-specified
signaling. The role of phosphorylation in signal transduction by the tomato serine/
threonine kinase Pto and the rice receptor-like kinase Xa21 has been extensively
examined. Kinase activity is required for HR elicitation mediated not only by the
AvrPto-Pto interaction but also by the constitutively active Pto mutant (PtoY207D)
(141, 160). Pto in vitro autophosphorylation sites were identified, and among them
Thr38 and Ser198 are essential for HR induction (159). However, the requirement
of autophosphorylation for Pto functionality is still unclear, as autophosphorylation
was not detected in vitro for certain functional Pto homologs or for Pto(Y207D)
(33, 141). The Xa21 catalytic domain shares similar kinetic properties with Pto, but
has a different pattern of phosphorylation sites (101). Function of the BRI::XA21
chimeric protein mentioned earlier was strictly dependent on kinase activity (73).



3 Apr 2003 9:57 AR AR184-PP54-02.tex AR184-PP54-02.sgm LaTeX2e(2002/01/18)P1: FHD

DISEASE RESISTANCE GENES 47

It will be interesting to determine functionality and requirement for stem rust
resistance of the two tandem kinase domains, which are encoded by the recently
isolatedRpg1barleyRgene (25).

Phosphorylation-related events and protein kinases participate inRgene–medi-
ated pathogen recognition and downstream signaling. RIN4 and PBS1 are impor-
tant examples already discussed. Members of the calcium-dependent protein ki-
nase (CDPK) family also participate inR gene–mediated disease resistance. Two
tobacco-related CDPKs, NtCDPK2 and NtCDPK3, are rapidly phosphorylated and
activated in cell cultures in aCf-9/Avr9-dependent manner (148, 149). Moreover,
VIGS in tobacco of theNtCDPK2gene family caused a reduced elicitation of the
HR mediated by theCf-4andCf-9 Rgenes (148).

Recent findings clearly demonstrate the involvement of MAP kinase cascades
in R gene–dependent signaling. SIPK and WIPK MAP kinases are activated dur-
ing resistance responses mediated by the tobaccoN and the tomatoCf-9 genes
(150, 205). In addition, overexpression of SIPK in tobacco plants induced the
elicitation of the HR and additional defense responses (206). Moreover, a to-
bacco MAPK kinase (NtMEK2) acting upstream of SIPK and WIPK specifically
phosphorylates and activates SIPK and WIPK, and induces activation of defense
responses when expressed in a constitutively active form (202). MAP kinase cas-
cades can also negatively regulate defense responses, as shown by the isolation
of theArabidopsisMAPKKK EDR1and MAPKMPK4, which encode negative
regulators of SA-mediated response (61, 133).

Additional Signaling Events and
Components in R Gene Function

Additional posttranslational modifications, such as glycosylation, and signaling
events, including ion fluxes, production of reactive oxygen species (ROS), and
nitric oxide (NO), appear to play important roles in signaling mediated byRgenes.
However, the regulation of these events and the molecular components involved
remain largely unknown. Glycosylation may have roles in signaling mediated by
the Ve protein and by proteins of the Cf family (90, 137). Although these proteins
contain putative glycosylation sites (90, 137), and Cf-9 is glycosylated in planta,
the involvement of glycosylation in their function has not yet been established
(137).

The relation between R proteins and early signaling events in the plant defense
response is beginning to be unraveled. For example,RPM1-dependent calcium
fluxes have been observed in leaves by using an aequorin-mediated biolumines-
cence assay (67). Among the potential targets of elevated Ca2+ levels in the cyto-
plasm are CDPKs and calmodulin. Indeed, a tobacco CDPK is involved inCf-9
signaling (148), and specific calmodulin isoforms were found to be activated in a
gene-for-gene–specific manner and to participate in Ca2+-mediated induction of
defense responses (75). Interestingly, indnd1(defense, no death) mutants, a re-
duced ability to produce HR and constitutive resistance is activated by disruption
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of the cyclic nucleotide-gated ion channel protein AtCNGC2, which has a putative
calmodulin-binding domain and is Ca2+ permeable (37).

In some instances, an increase in cytosolic Ca2+ is necessary for the activation
of the oxidative burst, which is engaged during HR formation (66, 67, 137). The
isolation of several components ofR-mediated signaling pathways has allowed the
testing of their requirement for the production of ROS in incompatible interactions.
For example, plants that are impaired in resistance by mutations inEDS1, NDR1,
RAR1, andSGT1b, but notPAD4, are also inhibited in the production of ROS
(121, 153, 166). Remarkably,EDS1encodes a protein with homology to phos-
pholipases, which in mammals are involved in the activation of ROS-producing
NADPH oxidases. In plants, pharmacological inhibitor studies indicated that phos-
pholipase activity is an intermediate in theCf-9/Avr9-dependent signaling pathway
that leads to ROS production (136). In addition,Arabidopsismutants missing func-
tional NADPH oxidase catalytic subunits show inhibited ROS production and alter-
ations in cell death in response to incompatible pathogens (181). Taken together,
these studies establish a first linkage betweenR genes and early physiological
events observed during incompatible plant-pathogen interactions. However, fur-
ther investigation is required to unravel molecular components and mechanisms
orchestrating these early signaling events of plant resistance.

FUTURE PERSPECTIVES

New Experimental Approaches to Understanding
R Protein Function

Despite major advances in the field of plant disease resistance, the precise molec-
ular mechanisms of plant-pathogen recognition and the detailed dissection ofR
gene–mediated signaling networks remain elusive. In the years ahead, new ge-
nomics and proteomics technologies will assist in the identification of signaling
components and in the investigation of the biochemical functions of R proteins
and other signaling molecules. The availability of the complete sequence of plant
and microbial genomes and of large collections of expressed sequence tags for
a number of plant species provide new opportunities to shed light on plant dis-
ease resistance. Pure computational analysis and database mining can lead to the
identification of genes involved in plant-pathogen interactions (60, 129, 134, 186).
In addition, the wealth of sequence information available in conjunction with
powerful technologies, such as cDNA and oligonucleotide microarray, serial anal-
ysis of gene expression (SAGE), and cDNA AFLP, is starting to yield a detailed
analysis of gene expression profiles during the plant defense response. A major
output of these analyses is sets of genes representing putative candidates involved
in early signal transduction pathways originating from the plant-pathogen recog-
nition events, or in downstream defense responses. High-throughput functional
analysis will assess the requirement and roles of these genes in plant disease resis-
tance. Valuable tools in this analysis will be the rapidly growing number of gene
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knockouts and activation-tagged lines that are becoming available for functional
genomics inArabidopsisand rice. In addition, sophisticated VIGS systems will
assist in high-throughput functional analysis in plant species recalcitrant to other
genetic manipulations. T-DNA populations, VIGS, and activation tagging also rep-
resent important tools for the design of efficient gain- or loss-of-function mutant
screens for the identification ofR-signaling components.

Beyond gene identification, proteomics approaches will provide insights into the
biochemical properties of proteins involved in disease resistance. New advances in
proteome analysis include the development of techniques for reproducible 2-D gel
electrophoresis and for protein identification based on accurate mass spectrometry.
These techniques will assist in the analysis of differential protein expression and
posttranslational modification, such as phosphorylation and glycosylation, during
plant-pathogen interactions. In addition, the introduction of protein microarrays
will boost the study of protein-protein interactions, and screens for substrates of
protein kinases and for targets of small molecules. Taken together, these investi-
gations will significantly contribute to our understanding of the mechanisms of
plant-pathogen recognition and of the complex signaling networks mediating the
activation of defense responses.
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Figure 1 Models for protein-protein interactions that might underlie plant-pathogen
“gene-for-gene” recognition. Models that encompass interactions that could be con-
sistent with the “guard” hypothesis are underlined. See text for a discussion of these
models.


