

Biotechnology & Food Engineering

Macroalgae - a potential new and renewable source for nutrients

Meital Kazir Supervisor: Assoc. Prof. Yoav D. Livney May 2017

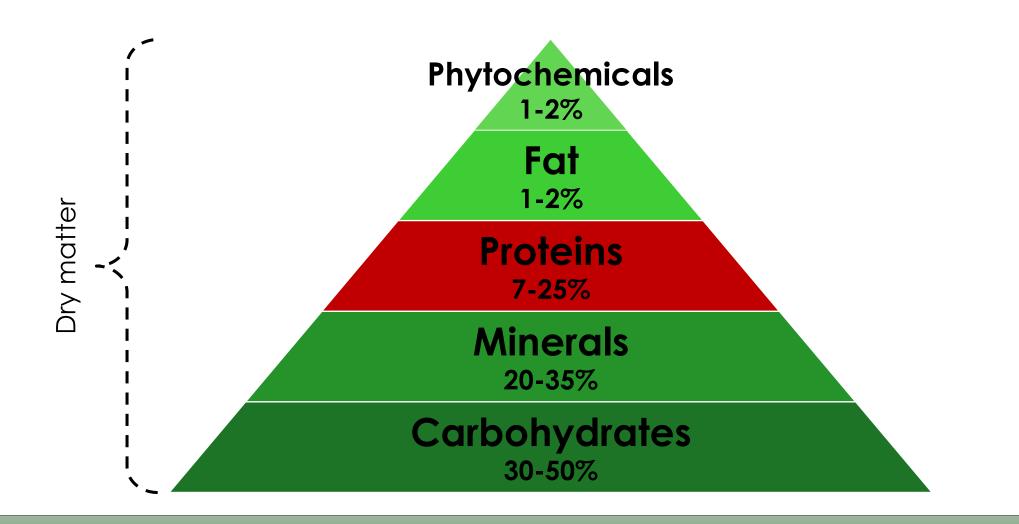
Team of Collaborators:

- Dr. Alexander Golberg (TAU)
 - Arthur Robin
 - Mark Polikovsky
- Dr. Alvaro Israel (IOLR)
 - Omri Nahor
- Prof. Yoav D. Livney (Technion)
 - Meital Kazir

Motivation

- Growth of global population 10 billion people by 2050
- Decrease in available land area
- Decrease in fresh water resources

Δ


High growth rate Diversity Minimal of environmental impact nutrients Algae Limited Renewable arable land Lack of fresh water

Why algae?

5

Chemical composition of algae

6

Algae as a source for variety of nutrients

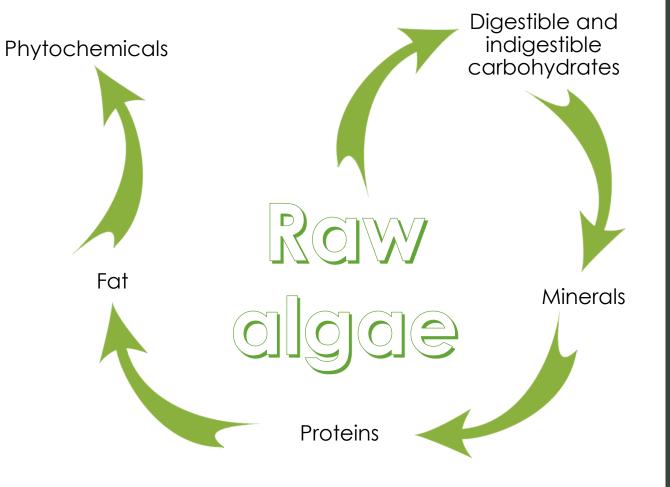
Carbohydrates	Prote	eins	Phytoc	chemicals
 Digestible Indigestible 	 Essential a acids Functional properties 		PhenolsCaroterVitamin	noids
	Fat	Min	nerals	

Fat	Minerals
 PUFAs Sterols (phytosterols) 	 Macro elements: Na, K, Ca, Mg Trace elements: I, Fe, Zn, Mn, Cu

Nutritional composition of algae

GERelatophysta

8


Nutritional composition of algae

Parameter	G. gracilis	0. pinnatifida	G. turuturu
% moisture (g/100g _{dry seaweed})	7.99 \pm 0.02 a	11.77 ± 0.01 e	$11.68 \pm 0.05 e$
% total Protein (g/100g _{dry seaweed})	20.2 \pm 0.6 d	23.8 ± 0.6 f	$22.5 \pm 0.3 e$
% total sugars ¹ (g/100g _{dry seaweed})	46.6	32.4	43.2
% total fat (g/100g _{dry seaweed})	0.60 \pm 0.01 a	0.9 ± 0.1 a	$2.2 \pm 0.1 c$
Total phenolic content (µg cathecol equiv/g _{dry seaweed})	228 \pm 14 a	337 ± 22 b	$208 \pm 8 a$
% organic matter (g/100g _{dry seaweed})	67.21 \pm 0.01 d	57.6 ± 0.2 a	$67.80 \pm 0.06 d$
% ash (g/100g _{dry seaweed})	24.8 \pm 0.03 b	30.62 ± 0.25 a	$20.52 \pm 0.01 c$
Parameter	S. muticum	S. polyschides	C. tomentosum
% moisture (g/100g _{dry seaweed})	9.64 ± 0.08 c	$10.88 \pm 0.04 d$	9.0 ± 0.2 b
% total Protein (g/100g _{dry seaweed})	16.9 ± 0.2 b	$14.44 \pm 0.1 a$	18.8 ± 0.1 c
% total sugars ¹ (g/100g _{dry seaweed})	49.3	45.6	32.8
% total fat (g/100g _{dry seaweed})	1.45 ± 0.07 b	$1.1 \pm 0.1 ab$	3.6 ± 0.2 d
Total phenolic content (µg cathecol equiv/g _{dry seaweed})	499 ± 32 c	$224 \pm 13 a$	920 ± 84 d
% organic matter (g/100g _{dry seaweed})	67.41 ± 0.02 d	$60.97 \pm 0.05 c$	55.0 ± 0.7 b
% ash (g/100g _{dry seaweed})	22.94 ± 0.06 d	$28.15 \pm 0.01 e$	35.99 ± 0.48 f

Zero waste agenda

- Nutritional benefits
- Economical benefits
- Environmental benefits

Algae Proteins

- Source for essential amino acids
- Antioxidants
- Surfactants
- Gelling agents

Ulva rigida

- Sea Lettuce
- Edible seaweed, chlorophyte family
- High content of polysaccharides (14-40% DB)
- Good source for proteins (7-24% DB)

	Wild U. capensis	Wild U. rigida	U. lactuca (I & J farm)	Leguminous plant ^a	Ovalbumin (eggs) ^b
Isoleucine	3.5±0.0	3.1±0.2	3.7±0.0	3.6	4.8
Leucine	6.8±0.2	5.2±0.2	6.7±0.1	7.3	6.2
Lysine	3.7±0.1	3.7±0.3	4.2±0.1	6.5	7.7
Methionine	1.5 ± 0.1	1.5±0.2	1.6±0.1	1.4	3.1
Cysteine	0.0±0.0	1.1 ± 0.1	0.4±0.4	1.3	0.0
Phenylalanine	4.0±0.2	3.3±0.2	4.0±0.0	2.4	4.1
Tyrosine	2.0±0.1	2.2±0.2	2.1±0.1	2.6	1.8
Threonine	5.0±0.1	5.0±0.3	4.7±0.0	4.0	3.0
Valine	6.3±0.0	5.6±0.4	6.2±0.0	4.5	5.4
Histidine	1.7 ± 0.1	1.4 ± 0.2	1.8 ± 0.1	4.0	4.1
Aspartic acid	17.2±0.6	13.0±1.1	12.3±0.9	5.4	6.2
Glutamic acid	10.9±0.2	9.4±1.0	9.0±0.5	6.7	9.9
Proline	3.6±0.2	4.3 ± 0.4	5.3±0.6	0.0	2.8
Serine	6.4±0.2	6.1±0.8	5.9±0.0	0.0	6.8
Glycine	8.8±0.2	7.8±0.2	10.7 ± 0.6	0.0	3.4
Alanine	11.8 ± 0.2	12.3 ± 0.7	14.2 ± 0.4	1.3	0.0
Arginine	3.3±0.3	4.6±0.5	3.6±0.3	14.0	11.7
Ammonia	1.5 ± 0.0	1.2 ± 0.1	1.3 ± 0.1	-	_

TECHNION

Israel Institute of Technology \frown

Table 1 Total amino acid of wild and farmed Ulva species (in g amino acid per 100 g protein)

Source: D. Shuuluka et al. Journal of applied phycology, 25.2:677-685, 2013.

U. rigida chemical composition

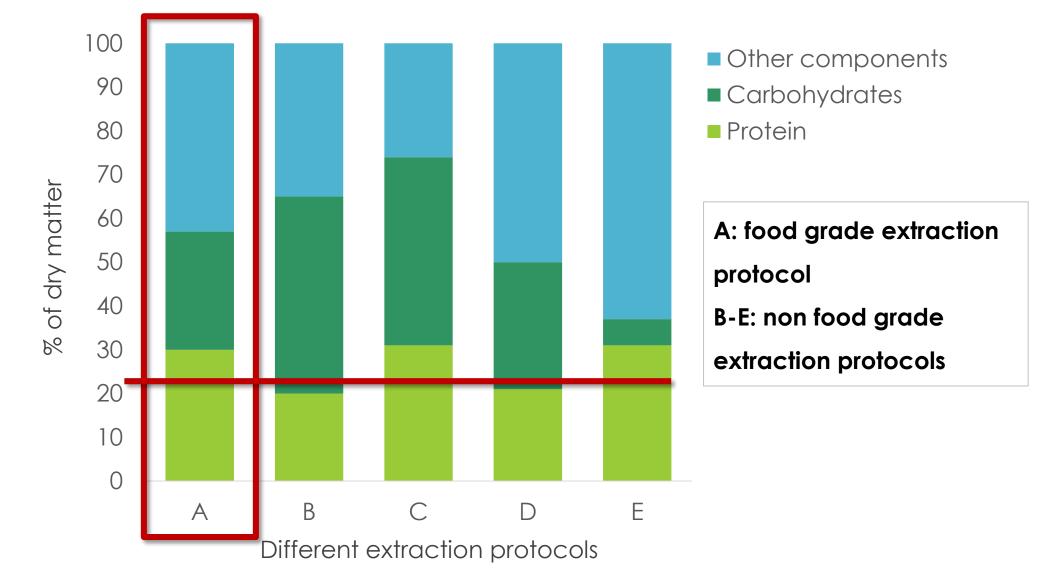
Proximate composition	Relative % on dry weight basis
Carbohydrate	37 <u>+</u> 3.9
Cellulose	23.8 <u>+</u> 1.2
Starch	7.6 <u>+</u> 1.1
Protein	6.2 <u>+</u> 0.9
Carbon	28.1 <u>+</u> 1.2
Nitrogen	4.5 <u>+</u> 0.7
Hydrogen	5.5 <u>+</u> 1.3
Sulphur	2.3 ± 0.4

Biochemical composition of U. rigida.

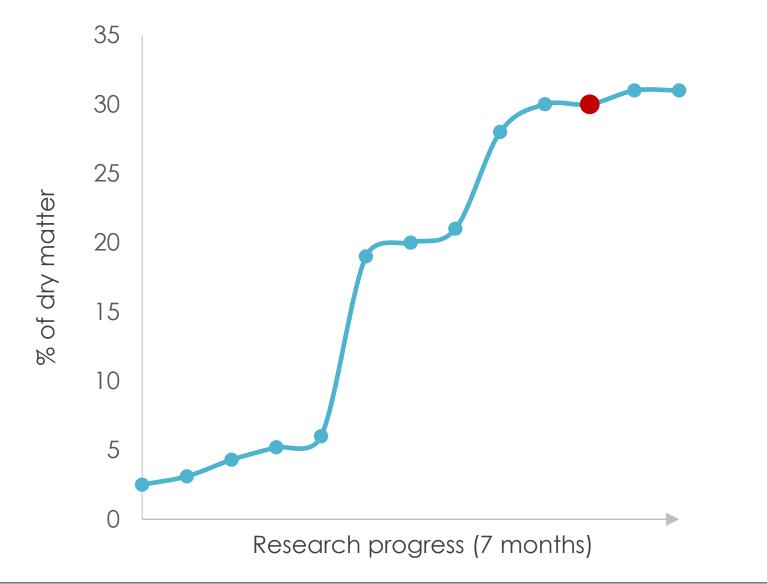
Proximate composition	Relative % on dry weight basis
Carbohydrate	15.88 ± 1.82
Protein	13.69 ± 0.68
Lipid	1.55 ± 0.06
Moisture	3.22 ± 0.07
Ash	50.39 ± 0.35
Carbon	19.41 ± 0.21
Hydrogen	2.43 ± 0.01
Nitrogen	2.19 ± 0.11
Sulfur	0.49 ± 0.10
Organic matter	46.85 ± 0.54

Cell lysis

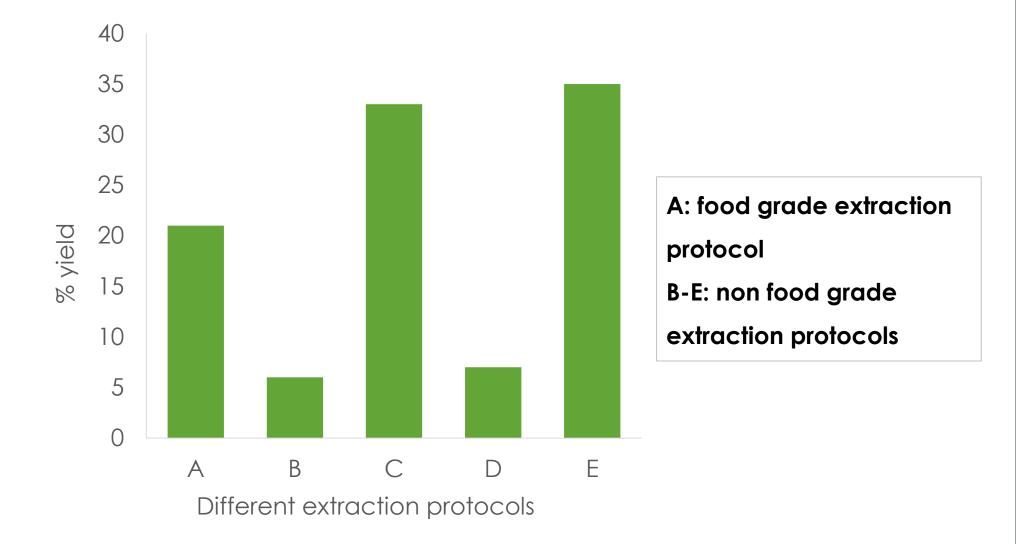
- Mechanical disruption
- Liquid homogenization
- Ultrasonication
- Osmotic shock



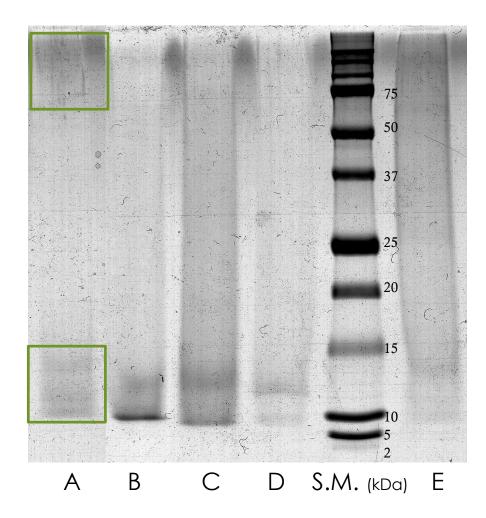
Results


Composition of protein enriched powders

TECHNION srael Institute



Improvement of %protein in extract



Protein extraction yield

SDS-PAGE

Conclusions

- Algae consist of a wide range of nutrients.
- Many of these nutrients have significant importance in human nutrition and great economic potential for the food industry.
- Establishing an offshore facility for algae cultivation will boost the development and utilization of this renewable and sustainable source for nutrients.

Acknowledgements

Ms. Yarden Abuhassira

Funding: The Israeli Ministry of Health, Chief Scientist Office, Fund on Food and Nutrition and their Implications on Public Health

Thank You

Meital Kazir May 2017