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In many circumstances, evaluations are based on empirical data. However, some observations may be impre-
cise, meaning that it is not entirely clear what occurred in them. We address the question of how beliefs are
formed in these situations. The individual in our model is essentially a “frequentist.” He first makes a subjective
judgment about the occurrence of the event for each imprecise observation. This may be any number between
zero and one. He then evaluates the event by its “subjective” frequency of occurrence. Our model connects the
method of processing imprecise observations with the individual’s attitude toward ambiguity. An individual
who in imprecise observations puts low (high) weight on the possibility that an event occurred is ambiguity
averse (loving). An experiment supports the main assertions of the model: with precise data, subjects behave as
if there were no ambiguity, whereas with imprecise data subjects turn out to be ambiguity averse.
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1.

1.1. Motivation

Let us suppose you have to undergo some medi-
cal treatment. In the first scenario you have the pre-
cise information that the treatment was successful in
25 out of 50 past cases and was unsuccessful in the
remaining cases. In the second scenario you have the
same information as before but in addition you are
notified that the outcomes of 20 other cases were
lost because of some technical problem, making the
overall success rate of the treatment unknown. How
would you feel about undergoing the treatment in
the second scenario compared to the first? Would the
presence of imprecise information lower your confi-
dence in the treatment?

In real-life situations, for example, in the fields of
finance, insurance, and medicine, the available infor-
mation is often given in the form of statistical data
with different degrees of precision. In this work we
explore how the precision of the statistical data affects
beliefs. Each case in the data set is an observation of a
similar instance in the past, in which an event of inter-
est did or did not occur. However, as in the example
above, some cases may be imprecise so that it is not
entirely clear what occurred in them.

The individual who is forming beliefs in the present
model is essentially a “frequentist.” When there is
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precise knowledge of whether or not the event
occurred in each past case, the individual evaluates the
likelihood of the event by its relative frequency, that is,
by the number of cases in which the event occurred
out of the total number of cases. However, when faced
with an imprecise case, the individual has to com-
plete the missing information by assuming that the
event did occur, did not occur, or anything in between.
After making an independent judgment regarding the
occurrence of the event in each imprecise case, the
individual may then evaluate the event by his subjec-
tive view of its frequency of occurrence.

Two opposite methods for processing imprecise
cases are studied. The first method is that of an indi-
vidual who tends to treat imprecise cases as if the
evaluated event did not occur. Thus, in the above
example of the lost medical records, the likelihoods
of both success and failure are evaluated at less than
1/2 (35/70); hence, the sum of the likelihoods of the
two possibilities is less than one. We loosely use the
term low-valued beliefs for evaluations that sum to less
than one. By contrast, the second method for deal-
ing with imprecise data is that of an individual who
tends to treat imprecise cases as if the evaluated event
did occur. The resulting evaluations generally sum to
more than one. We refer to these as high-valued beliefs.

In the extreme version of the first method, the
evaluator assumes that the event did not occur in
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all imprecise cases, leading to a belief valuation that
is placed at the lower bound of the set of possible
empirical frequencies. In the example above, this cor-
responds to evaluating both success and failure as
25/70. In the extreme version of the second method,
the individual completes every imprecise case as
though the event did occur. This evaluation places
the belief at the upper bound of its possible empir-
ical frequencies. In the example above, the beliefs
of success and failure would then be 45/70. In our
model, belief valuations may equal this lower bound
or upper bound, but in general they will fall between
these two extremes.

In several works that have discussed belief forma-
tion based on partial information, special attention
was paid to these extreme lower and upper prob-
abilities. In “theory of evidence,” Dempster (1967,
1968) and Shafer (1976) introduced the concepts of
belief and plausibility functions that, respectively,
correspond to the minimum and maximum likeli-
hoods of an event. Jaffray (1991) and Gonzales and
Jaffray (1998) studied special instances of Dempster’s
(1967, 1968) and Shafer’s (1976) theory when applied
to imprecise statistical data. Walley (1991) defined
lower (upper) probabilities, or, more generally, lower
(upper) provisions, as the highest (lowest) price at
which the decision maker is certain to buy (sell) a
gamble. Finally, Mukerji (1996) described a belief for-
mation process in the context of unawareness that
again can be reduced to a belief determined by the
lower bound presented above.

However, beliefs corresponding to the upper or
lower probabilities are generally too restrictive to be
able to explain observed behavior in experiments
in which subjects are provided with information in
the form of a set of probabilities (see, for example,
Borghans et al. 2009, Cohen et al. 1987, Halevy 2007).
The importance of allowing for a range of possible
beliefs when describing actual behavior is not lim-
ited to the type of information in these experimen-
tal works; rather, it extends to our context as well
in which information is given in the form of statisti-
cal data.

There is a certain theoretical symmetry between the
upper and lower bounds of the empirical frequencies.
Indeed, Dempster’s (1967, 1968) and Shafer’s (1976)
belief functions have plausibility functions as their
duals, and Walley’s (1991) lower probabilities have
the upper ones as counterparts. However, when the
event in question is associated with a positive out-
come, observed behavior tends to break this sym-
metry in the “pessimistic” direction: people tend to
make decisions as if the event had a probability at the
lower half of the range (as in our first method). This
idea is consistent with Ellsberg (1961) and subsequent

experiments’ that showed that people are ambigu-
ity averse, that is, they prefer betting on an outcome
whose probably is known rather than on one whose
probability is unknown.

In recent decades, the literature has offered sev-
eral theoretical models that can explain Ellsberg-
type behavior. The first such model is Schmeidler’s
(1989) Choquet expected utility (CEU), in which the
decision maker’s beliefs are nonadditive probabili-
ties (called capacities). Roughly speaking, in the CEU
model, low-valued beliefs (as in our first method) cor-
respond to ambiguity-averse behavior. By contrast,
high-valued beliefs (as in our second method) corre-
spond to ambiguity-loving behavior. Finally, additive
beliefs are identified with ambiguity neutrality.”

Schmeidler’s (1989) seminal paper and much of the
literature that followed is axiom based. These stud-
ies make assumptions about preferences that allow
us to describe the decision maker as if he holds cer-
tain beliefs. This literature, like the axiomatic foun-
dations of the classical Bayesian approach (Ramsey
1931, de Finetti 1937, Savage 1954), says little about the
origin of these beliefs or about how they depend on
objective data. The present work, by contrast, belongs
to a tradition that attempts to model how objec-
tive data are transformed into subjective beliefs. Like
Jaffray (1991), we are interested in a model where data
and beliefs are both explicitly represented, leading to
a better understanding of the relationship between the
two. We view this approach as complementary to the
axiomatic approach of Schmeidler (1989), Gilboa and
Schmeidler (1989), and others. The axiomatic approach
provides an interpretation of beliefs through observed
behavior, whereas the data-based approach enables
the prediction of when a situation is perceived as
ambiguous and of which beliefs individuals are most
likely to hold in those situations. In our model, impre-
cise information is the source of ambiguity, and rea-
sonable beliefs fall between the extremes of the two
belief formation processes described above.

Our model allows for different attitudes toward
ambiguity. Which attitude is most common is an
empirical question, which the present paper aims to
study. We designed an experiment to examine whether
imprecise data are a cause for ambiguity. The exper-
iment involves betting about the type of ball drawn
from an urn. Participants do not know the compo-
sition of the balls in the urn but are presented with
information about outcomes of past draws. In Experi-
ment 1, the participants are provided with precise data

1 See Camerer and Weber (1992) for a review.

2To be precise, Schmeidler (1989) associates ambiguity aversion
(loving) with convex (concave) capacities. In particular, the sum of
probabilities over all the states of nature will be smaller (larger)
than 1 with convex (concave) capacities. A formal definition of con-
vex and concave capacities is presented in §2.2.
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about past draws. We show that their behavior does
not differ significantly from that of participants who
know the proportions of the balls in their urn. These
results indicate that individuals who are presented
with precise information act as if there is no ambiguity.
In Experiment 2, one group of participants is provided
with precise data about the event in question, whereas
the other is provided with imprecise data. The latter
group’s behavior is consistent with their forming low-
valued beliefs reflecting ambiguity aversion.

1.2. Medical Example
The following example illustrates the main features of
our model.

A patient suffering from a runny nose, a headache,
and fatigue comes to Dr. Blue for a diagnosis. All
symptoms are consistent with the following illnesses:
allergy, flu, and pneumonia. For the purpose of the
example it is assumed that these illnesses are both
mutually exclusive and jointly exhaustive.

Dr. Blue has seen four patients in the past who suf-
fered from these same symptoms. His experience is
summarized in the following table.

Allergy  Flu  Pneumonia
Case 1 X X
Case 2 X
Case 3 X X
Case 4 X

Each row in this table represents a different patient
(or a separate past case), and each column represents
one of the possible illnesses. A cell with an X indi-
cates that this illness may have occurred in this case,
whereas an empty cell indicates that it definitely did
not occur. When a single X appears in a case (such as
in cases 2 and 4), the illness was perfectly identified;
however, when more than one X appears in a case
(such as in cases 1 and 3), the diagnosis was incon-
clusive (or imprecise).

Dr. Blue would like to apply the “frequentist”
approach to his diagnosis. When evaluating the event
“the patient has an allergy or the flu” he recalls that
three out of four patients suffered from either one of
these illnesses, and therefore he assigns it the proba-
bility 3/4.

When he evaluates the likelihood of the event “the
patient has an allergy,” he can no longer apply the
frequentist approach, because for both patients 1 and
3 it is unclear whether they had an allergy or the flu.
He may overcome this problem by assuming that in
one case it was an allergy and in the other it was the
flu, leading to an evaluation of the likelihood of an
allergy as 2/4 and the likelihood of the flu as 1/4.

But Dr. Blue, who is cautious by nature, would like
to lower this evaluation, especially because it relies

on considerable speculation. He realizes that there is
actually only one patient that suffered from an allergy
with 100% certainty (case 2) and no patient who suf-
fered from the flu to that degree of certainty. Assum-
ing the event occurred only in cases in which there
is absolute certainty reduces the probability of allergy
to 1/4 and of flu to 0.

However, this approach may be too cautious
because in these imprecise cases, one of the illnesses
must have occurred. Thus, he will arrive at a belief
about the likelihood of allergy and flu that falls
between the two different evaluations; that is, the
probability of allergy will be between 0.25 and 0.5,
and the probability of flu will be between 0 and 0.25.

Obviously, Dr. Blue’s evaluations are nonadditive.
His evaluation of the event “the patient has an allergy
or the flu” is 0.75. However, when it is partitioned
into the events “flu” and “allergy,” Dr. Blue’s evalu-
ations are relatively low, summing to less than 0.75,
reflecting ambiguity aversion.?

Now suppose that there are two types of drugs,
one cheap drug that treats only allergies and another
more expensive drug the treats both allergies and the
flu. With the additive probability above (of 0.5 for
allergy and 0.25 for flu), Dr. Blue may prescribe the
first medication for allergies only, based on the belief
that the advantage of the low cost of the first drug
outweighs the advantage of the high-priced drug that
treats both illnesses. However, with his resulting non-
additive belief, Dr. Blue is more inclined to prescribe
the second medication because the advantage of the
first drug is mitigated.

In the present model, a precise event is an event
that is either known to have occurred or known to
not have occurred in each past case (such as “an
allergy or the flu”). An imprecise event is an event
about which data are vague; namely, in some past
cases it is unknown whether it occurred or not (such
as the events “allergy” and “flu”). Here ambiguity
arises only when evaluating the likelihoods of impre-
cise events.

The rest of this paper is organized as follows. Sec-
tion 2 introduces a formal explication of the two eval-
uation methods. It studies the implications of these
methods and how they relate to the literature. Sec-
tion 3 presents the design and the main findings of
the experiment. Finally, this paper concludes with a
discussion of extensions of the model.

2. The Model and Results

2.1. Belief Formation
Let O ={w,, ..., w,} be a finite set of states of nature
(n>2), and let 3 be an algebra of subsets of Q) called

31t is equally possible to demonstrate beliefs that exhibit ambiguity
loving by modifying the belief formation process in the appropriate
way.
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events that is given by the power set 2%. A data set
D of length T is a sequence of events indexed by
i=1,...,T:

D=(B,...,B;),

where B; € 3\{@, Q}. A data set is also referred to as
memory.

The set of all data sets or memories of length T is
denoted by ¥, := (2\{@, Q})T, and the set of data sets
of any length is denoted by % :=Urcp,,. 0} Dr-

A case i is the ith element of a data set D. The
event B, is interpreted as the information available to
the individual regarding the occurrences in case i. For
any two cases i and j for which B; C B;, case i is more
informative than j. Two types of cases are excluded,
the first are cases in which B = @. Excluding these
cases implies that the evaluator is aware of all the
possible states of nature; thus the event that is known
to have occurred cannot be empty. The second type of
excluded cases are those in which B = (). These cases
add no information to the evaluation of the outcomes
because they do not narrow the set of states of nature
that have or have not occurred.

A capacity v is a mapping from 2 into [0, 1] such
that v(@) =0, v(Q) =1 and v is monotone; that is,
v(A) > v(A’) whenever A D A’. Let 7V be the set of all
capacities.

In this model v depends on data, namely, V: & —
* For any data set D, vy, is the capacity that the
decision maker attaches to the data set. Given D =
(Bi,...,Br), we defineVj<T

1 if A2 B,

FE(A)=1 |anB| @
otherwise,
|B;
and
0 if ANB; =g,

Gi(A) = |A°NB|| )

] .

—a———= otherwise,
|B;l

where 0 < @ <1 (the a in (1) and (2) are not necessar-
ily the same). The event A° denotes A’s complement,
and | | denotes the cardinality of the set. Two types of
evaluations of an event are considered:

T
b (A) = Zf%F"(A) (3)
and T cA
vS(A) = Zf:lT]() 4)

* This is a slight abuse of notation, because V: & — I/ refers to two
separate mappings defined below.

In some cases in the data set the individual may not
be sure whether event A occurred or not. Knowing
that B occurred in case j, Equations (1) and (2) deter-
mine how much weight the individual puts on the
possibility that A occurred in this case. When A D B, it
is obvious that A occurred, and the maximum weight
(i.e.,, 1) is put on this possibility according to both
equations, whereas when ANB = @ it is obvious that A
did not occur, and no weight is put on this possibility.
When the conditions above are not satisfied (that is,
when A 2 B and AN B # @), it is unclear whether A
occurred, and the equations generally provide differ-
ent solutions. We refer to these as judgments.

When a =1, the equations are identical, and the
weight put on the possibility that A occurred equals
the proportion of states in B that imply that A
occurred. With this parameter, the equations yield
an additive probability measure, and therefore this
approach is referred to as neutral. For « <1, an indi-
vidual following (1) will put a lower weight on the
possibility that A occurred compared to the neutral
approach, whereas an individual following (2) will
put a higher weight on this possibility.

Put differently, in (1) the individual starts out with
an initial judgment about the possibility that an event
occurred in case j, which is an additive belief p°°
However, with no firm grounds to justify this judg-
ment he lowers it to some extent out of cautious-
ness (the opposite being the analog of (2)). Under this
interpretation, « reflects the degree of confidence in
the initial judgment.®

Given a data set, the belief that a particular event A
will occur is formed by averaging the judgments
regarding the occurrences of the event A in each of
the past cases. In particular, for procedure (1) with the
extreme value of @ =0, the individual presumes the
event did not occur unless he is informed otherwise.
Thus, Equation (3) with & =0 corresponds to the low-
est possible belief valuation given the data set. The
reverse is true for procedure (2) with o =0, and there-
fore Equation (4) corresponds to the highest possi-
ble belief valuation given the data set. In general,
belief valuations increase with «a according to Equa-
tion (3) and decrease with « according to Equation (4).
Any belief valuation in the range between these two
extreme valuations is considered plausible given the
data set. Roughly speaking, the former approach leads

® Here the additive probability is p°(A) =|ANB;|/|B,|. In §4 we dis-
cuss how (1) and (2) can be modified to account for other additive
probabilities.

¢ The way the individual in our model tries to make sense of what
occurred in a single past case is closely related to the way the set
of beliefs are determined in the statistical e-contamination model
(e.g., Huber 1973, Berger 1985, Berger and Berliner 1986, Wasser-
man and Kadane 1990). In the e-contamination model, the lower
(upper) bound of the set of beliefs P over € corresponds to (1) ((2)).



192

Arad and Gayer: Imprecise Data Sets as a Source of Ambiguity
Management Science 58(1), pp. 188-202, ©2012 INFORMS

to low-valued beliefs, whereas the later approach
leads to high-valued beliefs.

In the next section we study the properties of belief
valuations based on (3) and (4) and connect them
to the literature. Of the two procedures, we find (3)
much more natural. For example, if one considers the
possibility that there is some underlying rule that one
does not entirely understand generating the impre-
cision of the data, a sensible precaution would be
to lower beliefs. Procedure (3) is also supported by
Gilboa (1988) and Jaffray (1988), who axiomatize a
non-expected utility preference over lotteries in the
context of risk. Their representations assign excessive
weight to the worst outcome and by adding some
restrictions can be reduced to CEU with a nonadditive
belief that is governed by (3). Finally, in the experi-
mental section, it is verified that participants” behav-
ior is consistent with (3) but not with (4).

2.2. Attitudes Toward Ambiguity

In this section it is shown that Equation (3) represents
ambiguity aversion, whereas Equation (4) represents
ambiguity loving, where the degree of ambiguity
aversion or love depends on a.

First, a few known properties of capacities that
prove useful are as follows: A capacity v is convex if
for all A and A’, v(A)+v(A) <v(AUA)+v(ANA),
and it is concave if the inequality is reversed.

A capacity v is a belief function” if it satisfies the
condition that, for any collection A,, ..., A, of subsets
of O, 0(Ui1,..,u A) = Dincqt, .y (D 0(Nic Ay).-
Note that n =2 is the convexity condition of v, and
thus every belief function is convex.

Let v be defined by 9(A) =1 — v(A°); then,
the following properties hold (see Marinacci and
Montrucchio 2004):

* v is a capacity if and only if 7 is a capacity;

* v is concave if and only if 0 is convex;

¢ if v is a probability, then v =7.

Note that for any event A, G;(A) =1— F(A%), so
v5 =05 if @ in F is equal to that in G.3

The concept of ambiguity aversion is that decision
makers prefer to be exposed to randomness of known
probabilities as opposed to randomness of unknown
probabilities. To formalize this idea Schmeidler (1989)
suggested a behavioral axiom by which a decision
maker who is indifferent between two uncertain alter-
natives will (weakly) prefer a mixture of the two. The
rationale behind this axiom is that when probabilities
are unknown, one alterative can be used as a hedge
against the other. Their mixture thereby reduces the

7 A “belief function” is a technical term in Dempster’s (1967, 1968)
and Shafer’s (1976) theory.
8 Henceforth, when we write v§ = o} it is with the understanding
the @ in F equals that in G.

uncertainty. Similarly, the reverse preference toward
mixing reflects ambiguity loving, whereas indiffer-
ence expresses ambiguity neutrality. Often ambiguity
aversion is associated with pessimism and ambiguity
loving is associated with optimism.

Schmeidler (1989) shows that in the context of CEU
this notion of ambiguity aversion (loving) translates
into convexity (concavity) of the capacity. A capac-
ity that is a probability, naturally, reflects ambiguity
neutrality. In the literature convexity is not uniformly
considered to be a necessary condition for ambigu-
ity aversion (loving), yet it is generally accepted as
a sufficient one. See, for example, Ghirardato and
Marinacci (2002) and Epstein and Zhang (2001). An
exception to this approach can be found in Wakker
(2008), which discusses the importance of relative
convexity.

In our model we use the CEU decision rule to study
the implied behavior of individuals. The following
proposition establishes how attitudes toward ambigu-
ity correspond to beliefs based on our two methods:

PrOPOSITION 1. The belief formation process v as
defined in Equation (3) is a belief function.

All proofs can be found the appendix. Proposition 1
establishes that v} is a belief function and thus is a
convex capacity. Moreover, because v5 = of, the con-
vexity of vf implies the concavity of v§. Therefore,
evaluating the likelihood of events according to Equa-
tion (3) leads to ambiguity aversion, whereas evaluat-
ing the likelihood of events according to Equation (4)
leads to ambiguity loving. When « =1 we have neu-
trality toward ambiguity. Note that when there is no
vagueness regarding the occurrences of events in the
data (that is, data are precise), any « leads to an addi-
tive probability and therefore the individual’s attitude
toward ambiguity in these circumstances cannot be
identified.

Ghirardato and Marinacci (2002) define the notion
of comparative ambiguity aversion by which Deci-
sion Maker 1 is more ambiguity averse than Deci-
sion Maker 2 as follows: if for every two alternatives,
one ambiguous and the other not, Decision Maker 2
prefers the unambiguous alternative over the ambigu-
ous one, then so does Decision Maker 1. In the con-
text of CEU, the characterization of this definition is
that for every event, Decision Maker 2’s capacity of
this event is larger than or equal to that of Deci-
sion Maker 1.° In the present framework it is easily
seen that for a given data set, according to procedure
(3) ((4)), a smaller (larger) a corresponds to a more
ambiguity-averse individual.

° The notion of “more ambiguity averse” also requires that the two
decision makers’ utilities over prizes are essentially the same. How-
ever, Ghirardato and Marinacci (2002) later argue that even when
their utilities are not identical, the same idea of capacity domina-
tion can be used to compare attitudes toward ambiguity.
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2.3. Ambiguous Events

It is undisputed that the presence of objective ambigu-
ity in a problem is associated with lack of information.
In our context, we identify objective ambiguity with
imprecise data sets in which the missing information
is in regard to outcomes of past cases. Precise and
imprecise data sets and precise and imprecise events
are formally defined as follows:

Given D = (B,, ..., By), we define case j as precise
with respect to event A if B;C A or B; C A%; namely, in
case j it is known whether or not A was realized. We
refer to A as precise with respect to case j when this con-
dition is satisfied, and we refer to A as precise when
it is precise with respect to every case in the data set.
This definition extends naturally both to single cases
and to data sets. Case j is regarded as precise when it
is precise with respect to every event in 2%, i.e., when
B; = {w;} for some w; € ). A data set or memory is
precise when all cases in it are precise and is impre-
cise otherwise. We use the terms imprecise events and
objectively ambiguous events interchangeably.

As it happens, there is much in common between
our notion of objective ambiguity and notions of
revealed ambiguity in the literature of decision theory.
In this literature, the set of ambiguous events are usu-
ally derived endogenously from observed behavior.
Generally speaking, an event is deemed to be ambigu-
ous if the decision maker’s preferences imply it (with-
out going into detail about the exact definitions).

On its face, revealed ambiguity, which is stated
in terms of preferences, is incomparable with our
idea of objective ambiguity, which is defined in terms
of available information. However, because revealed
ambiguity can be translated into conditions over
capacities, a comparison becomes possible by exam-
ining when the beliefs in our model meet these con-
ditions. We next turn to review some of the notions of
revealed ambiguity'? in the literature and study how
they relate to our notion of objective ambiguity.

Nehring (1999) showed that for maxmin expected
utility preferences, unambiguous events can be identi-
fied with events on which all probabilities agree. Fur-
thermore, because a capacity can be associated with
a set of probabilities, he was able to define unam-
biguous events in the CEU model by the associated
probability set in the same manner. Zhang (2002) and
Epstein and Zhang (2001) showed that for a subclass
of CEU preferences with a convex (concave) capac-
ity, the set of unambiguous events is {A | v(A) +
v(A)=v(AUA )V A’ C A}, which is equivalent to {A |
v(A) + v(A°) = 1}. Ghirardato and Marinacci’s (2002)

0 These definitions are very general in that they apply to many
decision models, the CEU model being only one of them. Indeed,
one of the objectives of Epstein and Zhang (2001) was that their
definition of ambiguity would be model free.

definition of unambiguous events agrees both with
Epstein and Zhang’s (2001) definition when expressed
in terms of capacities; and with Nehring’s (1999) defi-
nition when expressed in terms of the set of probabil-
ities. Likewise, the Klibanoff et al. (2005) definition of
unambiguous events is the same as Nehring’s (1999)
when expressed in terms of sets of probabilities.

The next lemma proves that when beliefs are rep-
resented by convex and concave capacities, Nehring’s
(1999) definition of unambiguous events is equivalent
to that of Epstein and Zhang (2001).

LeEMMA 1. Let v be convex (concave), and let A be an
event. Then v(A) + v(A") =v(AUA') for all A’ disjoint
from A if and only if v(A) =v(A).

Because in the previous section it was established
that in our model beliefs are either convex or concave
capacities, the condition of the lemma is satisfied. This
enables us to refer to an event as revealed as unambigu-
ous if it satisfies either the definition of Nehring (1999)
or the definition of Epstein and Zhang (2001).

In the following, the relationship between impre-
cise information (or objective ambiguity) and revealed
ambiguity is established.

ProrosiTION 2. For a <1, event A is precise given D
if and only if it is revealed as unambiguous. Furthermore,
the set of precise events forms an algebra.

Proposition 2 states that ambiguity, in our model,
is due to partial information in the data, and that had
information been precise no ambiguity would have
arisen.

The next proposition shows that only an imprecise
memory leads to a nonadditive probability measure.

PROPOSITION 3. Let a < 1, and let vf and vf be
defined as in Equations (3) and (4), respectively; then, vf
and v§ are probabilities if and only if the data set is precise.
In this case, v5 = vS.

Notice that in both Propositions 2 and 3, « is
required to be smaller than 1. When a =1, the proof
fails because when there is no revealed ambiguity,
we cannot conclude whether this results from precise
data or a neutral attitude toward ambiguity on the
part of the individual. It is a well-known fundamen-
tal problem in the revealed preferences approach that
when the individual has a neutral attitude toward
ambiguity, nothing can be inferred about the presence
of ambiguity (see the discussion in Ghirardato 2004).
Propositions 2 and 3 show that when revealed ambi-
guity is meaningful, it coincides with our notion of
objective ambiguity.
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2.4. Bibliographic Note

In two related works, Jaffray (1991) and Gonzales and
Jaffray (1998), construct a representation of prefer-
ences based on beliefs formed using imprecise cases.
This construction makes use of beliefs that fit our
formalization with a = 0. Jaffray and Philippe (1997)
show that this representation can be reduced to that of
a CEU maximizer with a capacity o = v+ (1—B)vS,
where vf and v§ are as described in Equations (3) and
(4), respectively, with the parameter a = 0. Therefore,
our belief formation process and that of Jaffray and
Philippe (1997) intersect only when our « equals 0
and their 8 equals either 0 or 1. In particular, when
B is strictly between 0 and 1, o will be neither con-
vex nor concave, which, according to our definitions
in §2.2, reflects neither ambiguity aversion nor ambi-
guity love.

Some other works that deal with belief formation
processes start out with an initial prior that is adjusted
in some manner. Hogarth and Einhorn’s (1990) initial
prior may depend on experience or statistical data.
This initial prior is modified by a process of men-
tal simulation in which the decision maker envisions
other decision weights that are higher or lower than
those of the anchor. Carnap (1952, 1980) and Viscusi
(1989) propose an updating process by which the
posterior (additive) probabilities are a weighted aver-
age of a prior probability and observed relative fre-
quencies, where the weight of the relative frequencies
depends positively on the sample size. Billot et al.
(2005) present a procedure, similar to ours, describing
how individuals form additive beliefs given data on
past cases. The main distinction between this model
and ours is the type of data the individual can pos-
sess. Billot et al. (2005) consider only cases with pre-
cise information, whereas we allow for cases with
imprecise information as well. This enables us to artic-
ulate the idea of ambiguity resulting from impre-
cise information. Eichberger and Guerdjikova (2010)
extend the work of Billot et al. (2005) to formalize
ambiguity caused by small samples.

The literature of ambiguity has also consid-
ered preferences over acts when the environment
varies. In Gajdos et al. (2008), each environment is
associated with a different set of probabilities, and
preferences are explicitly defined over those environ-
ments. Roughly speaking, in this work an ambiguity-
averse decision maker would prefer an environment
that is associated with a smaller set of probabilities.
This result is supported by the Ellsberg-type experi-
ments of Becker and Brownson (1964) and Borghans
et al. (2009), who find that an urn with a smaller
range of the number of balls of a particular color is
viewed more favorably than an urn with a larger one.
Applied to our context, this idea would mean that
individuals prefer a precise data set over an imprecise

data set. Based on the notion of “small worlds” from
Chew and Sagi (2008), Abdellaoui et al. (2011) discuss
the preference of more familiar sources of ambigu-
ity to less familiar ones. Assuming familiarity is pos-
itively correlated with precision of information again
would imply the preference of a precise data set over
an imprecise one.

3. Experimental Test of the Model

This section describes two experiments that were con-
ducted to examine whether the actual behavior of
decision makers is consistent with the model’s main
implications. The first experiment involves belief for-
mation given a precise data set, testing whether
the perception of the likelihood of an event matched
the actual frequency of occurrence of this event in the
data. The second and main experiment is concerned
with belief formation given an imprecise data set, test-
ing whether the subjects in the experiment are ambi-
guity averse in the presence of imprecise data.

Eighty economics students in undergraduate and
graduate studies at Tel Aviv University participated
in Experiment 1, and 292 undergraduate students
from both the Economics Department at Haifa Uni-
versity and the Engineering Department at Ben-
Gurion University participated in Experiment 2. The
experiments that lasted about 15 minutes took place
at the beginning of class.

The same instructions for both experiments were
presented before the students received their forms.
The subjects were informed that some of them (the
proportion was approximately 1 subject out of 25)
would be randomly chosen to participate in a lottery
at the end of the experiment and that the lottery was
not necessarily the same for all participants. All lot-
teries involved a draw of a ball from an urn, however
the type of ball might differ. For example, some par-
ticipants might encounter a particular bet, whereas
others might encounter the opposite bet. The subjects
were asked to state whether they preferred to par-
ticipate in the lottery specified on their forms or be
given a certain amount of money instead. They were
required to state their preference for every amount
of money that appeared in their forms, which varied
between NIS 10 and NIS 140.

The subjects were told that those who actually par-
ticipated in the lottery would be given a monetary
prize according to the choices they made. More specif-
ically, a certain randomly selected sum of money
would be given to those subjects who stated that they
preferred this certain sum over the lottery, whereas if
a subject stated that he preferred the lottery he would
be given the amount determined by its outcome (in
line with the procedure introduced in; Becker et al.
1964 (BDM)). It was further explained that although
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the decisions for subjects not selected to participate in
the lottery were hypothetical, they still had good rea-
son to state their true preferences because all subjects
had an equal chance of being chosen. Finally, it was
emphasized that there was no correct answer and that
their answers depended solely on their personal pref-
erences. After receiving a verbal explanation of the
experiment, the subjects were asked to carefully read
the instructions on their forms.

3.1. Experiment 1

In this experiment the behavior of subjects who were
provided with the exact proportions of different balls
in an urn is compared with that of subjects who were
not informed about the proportions, but instead were
given a precise data set of past cases (draws) in which
the frequency of occurrence of events fit the above
proportions.

Two different kinds of forms were randomly dis-
tributed among all subjects within each class of stu-
dents. The forms corresponded to two treatments:
the experimental group (treatment a) and the con-
trol group (treatment b). The general structure of the
forms used in both Experiments 1 and 2 can be found
in Online Appendix A (online appendices are avail-
able at http://www.tau.ac.il/~aradayal/Imprecise
_Appendix.pdf). Subjects in the experimental group
were told that their urn contained a total of 90 balls of
four different types with unknown proportions: yel-
low balls marked with O, white balls marked with O,
yellow balls marked with X and white balls marked
with X. Then, they were given information concern-
ing the outcomes in eight past draws of a ball from
this urn (with replacement). This data set appears in
Table 1."" Rather than being provided with a data set
of past draws, subjects in the control group, who had
a different urn, were told that their urn contained
exactly three yellow balls and five white balls.’? The
ratio of yellow balls in treatment b's urn was equal to
the proportion of observations in which a yellow ball
was drawn in treatment a’'s data set.

Subjects in both treatments were offered the oppor-
tunity to participate in the following lottery: “if at
the end of the experiment, a yellow ball is drawn
from the urn, you will receive NIS 150 (approximately
USD 40). Otherwise, you will get nothing.” Finally,
subjects were asked to state whether they preferred
to participate in the lottery over receiving an assured
amount of money M, for each M € {10, 20, ..., 140}.

'Note that the balls were not drawn in front of the subjects, but
rather were drawn prior to the experiment. All treatments in both
experiments (apart from treatment b in which there is no sample)
included two versions in which the order of the cases in the data
set were shuffled.

2The subjects were not informed that there were two different
treatments and correspondingly two separate urns.

Table 1 Data Set of Treatment a

Case Ball type

Yellow with O
White with X
White with X
White with O
Yellow with X
White with O
Yellow ball

White with X

O N O WN

The certainty equivalent (CE) is taken to be the low-
est amount of cash M that is preferred over participa-
tion in the lottery. The results would not be different
if the CE were defined as the highest cash amount
that is not preferred over participation in the lottery
(which is lower than the previous CE by NIS 10 when
the participants’” answers satisfy monotonicity) or the
average of these two alternatives.!”® The average CE
in treatment 7 is denoted by CE! for i =a, b. In both
treatments the participants were offered a chance to
bet on the ball drawn from their urn being yellow.
Therefore, a higher CE reflects a stronger belief that
a yellow ball would be drawn from their urn.'"* To
investigate the statistical differences between the CEs
in treatments a and b, a Mann-Whitney U test (also
known as the robust rank-order test) was performed.

3.1.1. Results. Thirty-eight subjects participated
in treatment a and 42 subjects in treatment b.
A detailed distribution of choices in all treatments in
the experiments appears in Online Appendix B. See
Figure 1 for the empirical distribution functions of
the CEs in treatments a and b. The average CEs for
the experimental group and the control group were
CE" = 67.37 and CE" = 69.52, respectively. A Mann—
Whitney U test indicates that the distributions of the
CEs in the two treatments were not significantly dif-
ferent (1 = 0.8248 and p=0.41 in a two-tailed test).
Therefore, the hypothesis that the CEs in treatments
a and b came from the same distribution cannot be
rejected.

These findings support the statement that an indi-
vidual forms a belief about an event that matches
the proportion of cases in memory in which this

3 Originally there were 377 participants in the two experiments.
The answers of five participants who violated monotonicity were
omitted.

“Note that in both Experiments 1 and 2, comparisons are made
only between two bets for which one stochastically dominates the
other (because the only aspect that can differ between the compared
treatments is the probability of the desired event). In such circum-
stances, criticisms of presumable preference reversals brought on
by the BDM procedure (see Karni and Safra 1987, Segal 1988) do
not apply. Hence, the ranking of the two compared bets is sustained
through our BDM mechanism.
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Figure 1 Empirical Distribution Functions of the CEs in Table 2 Precise Data Set
Treatments a2 and b
Case Ball type
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event occurred.’”® Note that the result that there is
no significant difference between the two CEs holds
despite the small number of past cases in treatment
a’s data set. This is in line with the evidence that peo-
ple take small samples too seriously, as in the phe-
nomena of the “law of small numbers” (see Tversky
and Kahneman 1971).

The results of Experiment 1 indicate that there is no
great difference between the beliefs of drawing a yel-
low ball in the bets of treatments 4 and b, and thus a
decision maker should be almost indifferent between
the two of them. Nevertheless, it is perfectly possible
that if instead of the task in Experiment 1 the partici-
pants were asked to choose directly between the two
bets, one bet would be chosen much more frequently
than the other. In other words, in this tie-breaking
situation, one of the bets would prevail, despite the
small differences in beliefs. We assert that in this case
participants feel that the known probabilities in treat-
ment b are more valid than the sample’s frequencies
in treatment 4, and therefore they have more confi-
dence in the former. Evidence of such a tendency is
found in Chipman (1960) and Gigliotti and Sopher
(1996), where, for example, participants preferred a
bet with a known probability of 0.5 to a bet with an
unknown probability tied to a sample in which the
desired event occurred half the time.

3.2. Experiment 2
To demonstrate that subjects are ambiguity averse in
the presence of imprecise data (that is, they behave

The experimental analysis in this between-subjects design
assumes no systematic difference in risk attitudes between treat-
ments due to the random assignment of subjects.

in accordance with F in Equation (3) and a <1),' it
is shown that their beliefs (CEs) are lower than those
induced by the neutral approach (ie., a =1).

A direct test would compare the subjects’ CEs
to those of ambiguity-neutral individuals given the
same imprecise data. Such a test cannot be performed
because the CE values of ambiguity-neutral individu-
als are unknown. Therefore, the key of the experiment
is to obtain the neutral CEs indirectly by a parallel
treatment. This is explained in detail in the following
subsection.

Eight kinds of forms, which represent eight dif-
ferent treatments, were randomly distributed to all
subjects within each class of students. All the forms
had the same structure as that of the experimental
group in Experiment 1; namely, all forms had a data
set of eight cases of past draws and a proposed lot-
tery that was defined over the type of the ball that
would be drawn at the end of the experiment. The
states of nature in all treatments were the different
types of balls that could be drawn from the urn; that
is, Q) = {white with O, white with X, yellow with O,
and yellow with X}. The treatments differed only in
their data sets and their proposed lottery. The data
set that appeared in the treatments was either pre-
cise (Table 2) or imprecise with respect to the event in
question (Table 3). All lotteries had the same structure
as that of Experiment 1: win NIS 150 if the type of
ball drawn is Z and 0 otherwise. The lotteries differed
according to the type of the ball Z, which could be one
of the following: white (W), yellow (Y), yellow with
O (YO), or yellow with X (YX). As in Experiment 1,
this is a between-subjects design.!”

The treatments are denoted by T}, where i € {P, IP}
and Z € {W, Y, YX, YO}. The upper index i indicates
whether the data set is precise (P) or imprecise (IP),

16 Both the requirement that people follow procedure F and that « <
1 are necessary for ambiguity-averse behavior. Stating both condi-
tions each time is cumbersome; therefore, hereafter the condition
a <1 is omitted.

171deally, one would want to compare the beliefs of the same sub-
ject given two alternative data sets. However, this raises the con-
cern that the former data set may influence the evaluation of the
event based on the later data set.
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Table 3 Imprecise Data Set

Case Ball type

A ball with O
Yellow with X
Yellow with X
Yellow with O
White with X
Yellow

White ball

A ball with X

O N O WN =

and the lower index Z indicates the type of ball that
yields a prize when drawn from the urn. The average
CE of each treatment is denoted by CE} in the same
manner.

The discussion is divided into two parts. The first
part (treatments T}, Ty, TY, and T)) tests the main
hypothesis of the experiment, and the second part
(treatments TF,, TVP, T)y, and T)% ) is a robustness
test that verifies that the same results hold for other
events.

3.2.1. Part 1. The data set that appeared in treat-
ment T} consisted of eight past cases, which were
precise with respect to event W (see Table 2). The data
set of treatment T/ was obtained by transforming
two precise cases in the data set of treatment T,—one
in which W did occur (case 1) and one in which W did
not (case 8)—into two imprecise cases with respect
to event W (by omitting the information regarding
the color of the ball). The remaining six past cases
were practically unaffected (see the data set of T in
Table 3)."® Subjects were offered the lottery “win NIS
150 if a white ball is drawn and 0 otherwise” in both
treatments T}, and T}y .

According to the model, individuals who observe
the precise data set given in treatment T}, hold the
same belief about event W, regardless of their a. Note
that (W) =1 and K(W) =0 given this precise data.
An individual in treatment T,¥ who follows the neu-
tral approach (i.e., & =1) holds the same belief about
W as individuals in treatment T}, because given this
imprecise data set, £(W) = a(|W N B,|/|B;|) = 1/2 for
j=1,8, and F(W) is the same as in treatment Ty
for any j#1, 8. In contrast, an individual with a pes-
simistic approach (i.e., @ < 1) holds a lower-valued
belief regarding W. Therefore, the experimental find-
ings support the hypothesis of the model that subjects
follow a pessimistic approach (or a < 1) if subjects in
treatment T, hold a lower-valued belief than subjects
in treatment Tj}.

8 Case 6 is also different in the two samples. Nevertheless, this
difference should not affect the results, because this case is precise
with respect to the relevant events in treatments Ty, T,¥, TF, and
T!P. The reason for this difference will become apparent in Part 2
of Experiment 2.

Figure 2 Empirical Distribution Functions of the CEs in Treatments 7/
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One may be concerned that although the belief val-
uation of subjects in treatment T, regarding event W
may indeed be lower than that of subjects in treatment
TF, their belief valuation regarding the complement
event Y may be higher than that of their counterparts.
This set of beliefs does not reflect ambiguity aversion
and is inconsistent with the model. The purpose of
treatments T, and T{” is to test whether or not this
occurs.

The data set in treatment T} is identical to that
in treatment T}, and the data set in treatment T)°
is identical to that in treatment T;. The lottery pro-
posed in both T and T was “win NIS 150 if a yel-
low ball is drawn and 0 otherwise.” The hypothesis of
this part of Experiment 2 is that the belief valuation
based on imprecise data is lower than that based on
precise data for both the event W and for the com-
plement event Y. In particular, both CE < CE{; and
CEY < CE}."

Results of Part 1. There were 32 participants in both
treatments T, and T}/, and 46 and 42 participants in
treatments T} and TJF, respectively. The average CE
of treatment T}, was CE}, = 65.3, and that of treatment
T was CElJ =50.9. The results indicate that CE}; is
higher than CE[;, where the difference between the
two distributions of CEs is significant according to a
Mann-Whitney U test (1 =—2.31 and p =0.01). Like-
wise, the average CE of treatment T, was CE} =78.5,
and that of treatment Ty" was CE}f =70. Here again,
CE? is higher than CEY’, and the difference between
the two distributions is significant (1 =1.55 and p =

¥ The comparisons in Experiment 2 are made only between two
bets for which one stochastically dominates the other. Thus, as
argued in Footnote 14, Karni and Safra’s (1987) and Segal’s (1988)
critiques regarding the elicited CEs do not apply.
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Figure 3  Empirical Distribution Functions of the CEs in Treatments 7] Finally, another alternative procedure of belief for-
and 7, mation might be that individuals form beliefs accord-
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0.061). Figure 2 presents the empirical distribution
functions of the CEs in treatments T, and T, and
Figure 3 shows the empirical distribution functions of
the CEs in treatments T} and Ty". As can be readily
seen from these figures, not only are the empirical dis-
tributions different, but also the empirical distribution
function that is associated with the precise data first
order stochastically dominates that of the imprecise
data in the corresponding treatment.

The only difference between treatments T, and T}
and between treatments T} and T} is the imprecision
of the data set. Therefore, the findings support the
premise that imprecise data are a source of ambiguity
aversion.”

Although the model allowed for ambiguity-loving
((4) with @ < 1) and ambiguity-neutral behavior
(when a =1 in either (3) or (4)), these experimen-
tal results provide evidence against them, because
the former would entail that the CEs in treatments
T and T}" be higher than those in treatments T,
and Ty, respectively, and the latter would imply that
they should be approximately the same.

More generally, these findings undermine all addi-
tive belief formation processes (such as ignoring the
sample and relying on some additive initial prior
instead) because they impose that CE[; < CE}, if and
only if CEY > CEL.

21t should be noted that these comparisons do not rule out the pos-
sibility that the subjects’ beliefs depend on the tasks they face. For
example, they may hold different beliefs when betting on yellow
as opposed to white. A test of such a conjecture should compare
the belief valuation of yellow with a given data set, to that of white
with the reverse data set, in which every past case in which yellow
appeared is replace with white and vice versa.

ignoring the imprecise cases. Had this been true, CEf,
would have been higher than CEl}, and CE} would
have been lower than CE!’; hence, it too is ruled out
by the results of the experiment.

3.2.2. Part 2. Formally, to confirm that subjects’
beliefs exhibit ambiguity aversion in the presence
of imprecise data, we need to elicit their beliefs for
each event in 3 (which amounts to 14 events exclud-
ing @ and Q). Furthermore, these beliefs need to
be obtained for both imprecise and precise data.
This means that 28 treatments need to be performed,
which is a number way too large from any practical
perspective. Therefore, in Part 2 of this experiment,
we chose to focus on two such events, a draw of yel-
low with X and a draw of yellow with O, both of
which contain a single state of nature as opposed to
the events in Part 1 of the experiment, which contain
two states of nature. We view this as a robustness test
to check whether the previous results hold for addi-
tional events.

In this part, four treatments were performed: Ty,
TIE, TL., and TJ}. The data sets in this part are the
same as in the previous part. The data set in treat-
ments T}, and Ty is the same as in treatments T},
and TY, which is precise with respect to the events
YO and YX (see Table 2). The data set in treatments
T!5 and T)% is the same as in treatments T,) and
T!?, which is imprecise with respect to the events YO
and YX (see Table 3). Note that the relevant impre-
cise observations in treatment Ty, are cases 1 and 6,
whereas the relevant imprecise observations in treat-
ment T/% are cases 6 and 8. Furthermore, in the pre-
cise data set, the event YO occurred in case 6 and
did not occur in case 1, and the event YX occurred in
case 8 and did not occur in case 6. This leads us to
conclude that the same analysis and the same type of
hypothesis as in Part 1 apply here; specifically, CE}, <
CE?, and CE, < CEL,.

Results of Part 2. The numbers of participants in
treatments Ty, and T}, were 46 and 38, respectively,
and in treatments T, and T}, 33 and 23, respectively.
The main results are CEY, = 63.3 and CEl}, = 52.4.
Evidently, CEY, is higher than CE}}, and the two dis-
tributions of CEs are significantly different according
to a Mann-Whitney U test (1 = —1.44 and p = 0.076).
Also CE}y, =69.1 and CE!f, =48.7. Here again, CEY,
is higher than CE}%, and the distributions are signifi-
cantly different (1 = —2.73 and p = 0.003). Thus, sub-
jects hold lower-valued beliefs than those induced by
the neutral approach within the event Y, both for the
event YX and for the event Y\ YX (namely, YO). The
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Figure 4 Empirical Distribution Functions of the CEs in Treatments TYPO
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empirical distribution functions of the CEs in treat-
ments T}, and T/ can be found in Figure 4, and the
empirical distribution functions of the CEs in treat-
ments TYy and Ty} can be found in Figure 5. As can
be seen from these figures, the empirical distribution
function that is associated with the precise data first
order stochastically dominates that of the imprecise
data in the corresponding treatment.

We should recall that the experiments are based
on a between-subjects approach. Therefore, the results
indicate that subjects are ambiguity averse in the pres-
ence of imprecise data only on an aggregate level.
This does not rule out the possibility that some sub-
jects are ambiguity neutral or even ambiguity loving.
In a within-subjects design it is possible to identify an
individual’s exact attitude toward ambiguity by elic-

Figure 5  Empirical Distribution Functions of the CEs in Treatments 7.,
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iting his beliefs over events given imprecise data sets
and then estimating his v5(A) or v5(A) value.

4. Discussion

In this work we introduce a model of belief forma-
tion based on a data set where some observations are
imprecise. The use of imprecise data leads to a belief
that is nonadditive. Our model may be interpreted
as an approximation of the actual mental process
undergone by an individual to evaluate the likeli-
hood of events, which the individual may or may not
be aware of. Focusing on the mental process enables
us to narrow the possible beliefs that people might
hold and to highlight the role of imprecise informa-
tion in causing ambiguity. We suggest that impre-
cise information is a source for nonneutral attitudes
toward ambiguity, ambiguity aversion in particular,
and present experimental evidence to support this
feature of the model.

We now discuss three modifications of the model,
for which the main results would hold as well. Fol-
lowing Billot et al. (2005), we can easily enrich our
model by allowing cases to vary in their characteris-
tics.?! Thus, an individual’s evaluation of an event in
a given situation will be a weighted average of the
outcomes in past cases, where the weights are deter-
mined by the relevance or similarity of these past
cases to the current situation. When restricting cases
to those possessing identical characteristics, the eval-
uation reduces to that of the basic model, i.e., to the
relative frequency of occurrence.

One of the main limitations of the present model is
that the belief formation studied does not depend on
the number of observations in the data set. One might
expect that as an individual accumulates more data
about a certain situation, his ambiguity would grad-
ually disappear. Eichberger and Guerdjikova (2010)
introduced ambiguity into the framework of Billot
et al. (2005) by allowing the individual to hold a set
of conceivable probabilities given past cases. They
showed that as the data set grows, the ambigu-
ity diminishes. It is possible to encapsulate this ele-
ment in our model by making additional assumptions
about the memory accumulation process, for instance,
by assuming memory relies both on first- and second-
hand experience. Naturally, first-hand experience is
more detailed and thus more precise than second-
hand experience. At an early stage of an individual’s
life, his experience may rely more heavily on other
peoples’ experience; however, with age, the propor-
tion of personal experience grows. Thus, in this modi-
fication, a larger memory contains a higher proportion

ZIn an earlier version of this paper, we did include this feature.
That version included only extreme attitudes toward ambiguity
(i.e., «=0), and it also had an axiomatization for those cases.
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of precise cases. Therefore, beliefs based on this larger
data set reflect less ambiguity.

To discuss another feature of our model, let us con-
sider an extreme situation in which the individual has
a single imprecise case in memory B;. According to
the model, all states in B; are perceived to be equally
likely. This is in accordance with Laplace’s principle
of insufficient reason, which is best applied to situa-
tions endowed with symmetry. This principle is not
as appealing in asymmetric circumstances, in which
there is good reason to believe that some states are
a priori more likely to occur than others. Our model
could be easily modified to incorporate such an ele-
ment by replacing F,(A) (Equation (1)) with

ZweAﬁBj L(w)
Z(ueB] L(w) ’

where L(w) are all positive weights. If initially w; is
perceived to be more likely than w;, it is most reason-
able to set L(w;) > L(w;). It then follows that given the
same information in memory regarding w; and ; the
evaluation of the former will be weakly higher than
that of the latter. In symmetric situations, L(w;) will
equal L(w;) for every i and j, and hence Equation (5)
will be reduced to Equation (1). In this modified ver-
sion of the model based on Equation (5), this paper’s
main theoretical results continue to obtain.

The settings in the urn experiments reported in
this paper have the underlying symmetry property to
which Equation (1) applies. The following is a short
description of an experiment that we conducted taht
better fits the circumstances of the modified model.
The experiment concerned subjects’ beliefs about the
color of a car at a randomly chosen spot in a park-
ing lot nearby. It is clear that some car colors are
perceived to be more common than others, such as
blue compared to purple. Some of the subjects in the
experiment were provided with the actual frequen-
cies of the various colors of cars that were parked in
the lot three days earlier, whereas others were pro-
vided with imprecise data on the subject. The findings
of the experiment indicate that imprecise data are a
source of ambiguity aversion also in such asymmetric
circumstances.

F(A) =« ()
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Appendix

PrOOF OF ProrosiTioN 1. First it is established that vf
is a capacity. Take any data set D= (B,, ..., By). v5(2)=0

because for any j, @ N B; =&, and thus F(2) = 0. For any
j, Q> B;, thus Fj(Q) =1 and v5(Q) = 1. Finally, take any
ACA, forall B, {w|we ANB;} C{w|wec A'NB}; thus,
F(A) = F(A) and of(4) = oh(4).

To show that o5 as defined in Equation (3) is a belief
function, we start by proving that the Es for j=1,..., T
are belief functions; that is, for any j and any collection
A, ..., A, of subsets of Q,

Fj(,ﬁy/nAi) =D

(H:HCL,...,n))

(_1)\H\+1Fj(n Ak)- ©)

keH

Note that for any probability measure p the following
rule holds:

(U a)-

{H:HCA{1,...,n}}

0 ( 0 4c).
keH

Take any j and any collection A, ..., A, of subsets of
Q. Let p be the probability measure defined by p(A) =|AN
B;|/|B;| for all A€ Q. Then if B; € A, F(A) =p(A) and oth-
erwise F(A) = ap(A) < p(A) (for @ <1). If Uy, Ac 2 B,
it follows that (;c;; A; 2 B; for all H, and therefore

(Y)Y )
T

{H:HC{1,...,n}} keH
- x> (N A);
{H:HC{1,...,n}} keH

hence (6) holds. If, on the other hand, |U,_;

AU 4)=r( U 4)

> om0 4)

+A; 2 Bj, then

{H:HC{1,...,n}} keH
> » conE(Na);
{H:HC(1,...,n}} keH

hence (6) still holds.
Because (6) holds for all cases, it also holds for the aver-
age, that is,

v;( U A
=

i=1,..., n

YL EWUin, e A)
)= =

> Zf:l Z(H:Hg[l,...,n}}(_1)|H|+1F}'(ﬂkeH Ak)
—_ T 4

and hence

v, <,—U Ai) z >

i=1,...,n {H:HCA{1L,...,n}}

v N a),

keH

which concludes the proof. O

Proor ofF LEMMA 1. Assume v(A) + v(A') = v(AU A)
for all A’ such that AN A’ = @; then, in particular, v(A) +
v(A°) = v(Q). Therefore v(A) = v(A).

Let v be convex, and assume v(A) = 9(A). Take A" such
that AN A’ = @; then v(A) + v(A") <v(AUA"). Assume by
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negation that v(A) + v(A’) < v(AU A’). Then by the defini-
tion of o we have 9(A) + (v(Q) — 9(A°)) < v(Q) — V((AU
A')%). Therefore, 9(A)+ 0((AUA')°) < 9(A°), which is a con-
tradiction because 7 must be concave. A similar proof could
be applied for a concave capacity. O

PrOOF OF PROPOSITION 2. Let memory be precise with
respect to A. Then for every j, either Bj CAor B]- C A° If
B; € A (then B;N A # @), then both F;(A) =1 and G;(A)=1.
If B; € A° (then B;N A = ), both F(A) =0 and G;(A) =
0. It follows that v} (A) = v5(A). Thus, v (A) = Tp(A) and
05 (A) = 75(A).

Assume memory is imprecise with respect to event A.
Then there exists a case j such that B; £ A and B; ¢ A°.
Therefore, F;(A) < G;(A) (for a <1). By the definitions of F
and G, F(A) < G,(A) for every j, and thus vf,(A) # v5(A).

We turn to prove that precise events form an algebra.
Observe that @ and Q) are precise events. Furthermore, by
the definition of a precise event, if A is precise, then so
is A°. Therefore all we have to show is that if A and A’
are precise events, then so is AUA’. Assume A and A’ are
precise, then for all j, B; is contained in one the following
events: ANA, (A\A'), (A’\A), or (AUA")°. But this means
that B; is contained in (AUA’) or (AUA')¢. Therefore, AU A’
is a precise event. [

ProoF of ProrosiTioN 3. Take data set D= (B, ..., By).
Assume it is precise (i.e., B; =w; for some i). In this case,
E(A) = G;(A) for every A and j. Thus v}, = vS. To show
that vy is a probability, it is sufficient to show that it is
additive. Take any two disjoint events A and A’. For every
j,if AUA’D B;, then either AD B; or A’ 2 B; and not both.
Furthermore, if AUA’ 2 B;, then both A ? B; and A’ ? B;.
Thus F(AUA') = F(A)+ F(A') for every j. Therefore vp(AU
A)=vp(A)+vp(A).

Let vp be additive, and assume by negation that there
exists a case j in memory that is imprecise. Take A and
A’ disjoint such that AU A" = B;. Then a = F(A) + F(A’) <
E(AUA’) =1 (similarly, 2 — a = G;(A) + G;(4) > G;(AU
A’) =1). For every i, F(A) + E(A") < FE(AUA’) (similarly,
Gi(A) + G;(A) = G{(A U A)); thus, vp(AU A) # vp(A) +
vp(A’), which is a contradiction. O
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