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Structural biology

Structural biology is the study of the molecular structure and dynamics of
biological macromolecules, particularly proteins.

b 

(left) A protein complex that governs the circadian rhythm. (middle) A sensor of the type that
reads pressure changes in the ear and allows us to hear. (right) The Zika virus.
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Exciting times for cryo-electron microscopy (cryo-EM)

Tamir Bendory (Tel Aviv University) The sample complexity of MRA 3 / 23



Why cryo-EM?

Does not require crystallization and thus can capture molecules in
their native states

Has the potential to analyze conformationally heterogeneous mixtures
and, consequently, can be used to determine the structures of
complexes in different functional states
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The recent growth in the number of high-resolution
structures produced by cryo-EM
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Taken from the Electron Microscopy Data Bank public repository.
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The resolution revolution

Resolution 

before 2013 

Resolution 

at present 

https://www.nobelprize.org/prizes/chemistry/2017/press-release/
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Recent survey

Bendory, Bartesaghi, and Singer. “Single-particle cryo-electron microscopy: Mathematical theory, computational
challenges, and opportunities.” IEEE signal processing magazine 37.2 (2020): 58-76.
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Mathematical model of cryo-EM
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Mathematical model of cryo-EM

Pi = projection(rotation(φ)) + noise

The cryo-EM problem: Estimate 3-D structure φ from P1, . . . ,Pn, while
the 3-D rotations are unknown and the SNR is low (say, 1/100).
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Multi-reference alignment

Let X be a vector space and G be a group acting on X. Suppose we have
n measurements of the form

yi = T (gi ◦ x) + εi , i = 1, . . . , n,

where

x is an unknown element of X;

g1, . . . , gn are unknown elements of G ;

◦ is the action of G on X;

T : X→ Y is a linear operator;

Y is the (finite-dimensional) measurement space;

ε′i s are independent noise terms.

Our goal it to estimate the orbit

Gx = {g ◦ x |g ∈ G}.
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Example: 1-D discrete MRA

=0 =0.1 =1.2
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Estimation in the high SNR regime

Recall that we wish to estimate the orbit of x ∈ X from

yi = T (gi ◦ x) + εi , gi ∈ G , i = 1, . . . , n.

If the gi were known, then the task of recovering x would reduce to a
classical linear inverse problem, for which many effective techniques
exist.

Therefore, the problem reduces to estimating the group elements
g1, . . . , gn from the observations y1, . . . , yn.

The leading methodology to estimate the group elements is called
group synchronization, see for example [Singer, ’11], [Boumal, ’16], [Bandeira

et al., ’17].
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High vs. low SNR

Abbe, Bendory, Leeb, Pereira, Sharon, and Singer. “Multireference alignment is easier with an aperiodic translation
distribution.” IEEE Transactions on Information Theory 65, no. 6 (2018): 3565-3584.
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Sample complexity in the low SNR regime

In the low SNR regime n, σ →∞ (fixed dimension L), estimating the
group elements accurately is challenging.

Remarkably, is was shown that one can estimate the signal even if the
group elements cannot be estimated.

In particular, it was shown that if d̄ is the lowest degree moment that
determines an orbit uniquely, then n = ω(σ2d̄) is a necessary
condition for accurate recovery [Abbe et al., ’18], [Perry et al., ’19].

Therefore, the question of sample complexity boils down to
identifying d̄ for a given MRA setup; it may depend on the vector
space X, the group G , the linear operator T , and the distribution of
group elements.
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Some results

1-D discrete MRA

I if the group elements are drawn from a uniform distribution, then
d̄ = 3. Thus, n = ω(σ6). [Bendory et al, ’17], [Perry et al., ’19]

I if the group elements are drawn from almost any non-uniform
distribution, then d̄ = 2. Thus, n = ω(σ4). [Abbe et al., ’17]

For cryo-EM with a uniform distribution over SO(3) (under some
simplifying assumptions), d̄ = 3. Thus, n = ω(σ6). [Bandeira et al., ’17]
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More examples (partial list)

MRA in 2-D [Ma et al., ’19], [Janco and Bendory, ’21]

MRA with projection [Bandeira et al., ’17]

Heterogeneous MRA [Bandeira et al., ’17; Boumal et al., ’18]

unprojected cryo-EM [Fan et al, ’21; Liu and Moitra, ’21]

dihedral MRA [Bendory et al., ’21]

MRA with dilations [Hirn and Little, ’19]

MRA with the rigid motion group [Bendory et al., ’21]

sparse MRA [Ghosh, Rigollet, ’21; Bendory et al. ’21]

learning a rigid body [Bandeira et al., ’17; Pumir et al., ’21]

low-rank covariance estimation under unknown translations [Landa and

Shkolnisky ’21]
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Computational consequences

The method of moments achieves the optimal estimation rate (we’ve
implemented the method for cryo-EM experimental datasets [Levin et

al., ’18], [Bendory et al., ’18], [Sharon et al., ’20]).

In practice, expectation-maximization usually outperforms the method
of moments.

In the low SNR regime, matching all the moments is equivalent to
maximizing the likelihood function [Katsevich and Bandeira, ’21].

In some MRA models, we conjecture the existence of
computation-statistical gaps: these are regimes in which the
underlying statistical problem is information-theoretically possible
although no efficient algorithm exists [Bandeira et al., ’17],[Boumal et al.,

’18],[Bendory et al., ’20], [Bendory et al., ’21].
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Sample complexity in high dimensions

For 1-D MRA when n, L, σ →∞ (with a Gaussian prior), the sample
complexity is not determined by the moments but by the ratio

α = L/(σ2 log L).

When α > 2 the impact of the unknown circular shifts on the sample
complexity is minor, and the problem is almost as easy as estimating
a signal in additive white Gaussian noise.

In sharp contrast, when α ≤ 2, the problem is significantly harder and
the sample complexity grows substantially quicker with σ2.

Romanov, Bendory, and Ordentlich. “Multi-reference alignment in high dimensions: sample complexity and phase
transition.” SIAM Journal on Mathematics of Data Science 3.2 (2021): 494-523.
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Take-home message

Many exciting open computational challenges in MRA (in information
theory, machine learning, signal processing, statistics, algebra, etc.)

Theoretical and algorithmic results in MRA may have consequences
for cryo-EM:

I Reconstructing small molecular structures [Bendory et al., ’18]

I Reconstructing with fewer observations (in progress)

Cryo-EM is an alluring example of a challenging data science problem,
whose solution will have an immediate impact on all humankind.
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