The sample complexity of multi-reference alignment (and a few words about cryo-EM)

Tamir Bendory (Tel Aviv University, EE)

Structural biology

Structural biology is the study of the molecular structure and dynamics of biological macromolecules, particularly proteins.

(left) A protein complex that governs the circadian rhythm. (middle) A sensor of the type that reads pressure changes in the ear and allows us to hear. (right) The Zika virus.

Exciting times for cryo-electron microscopy (cryo-EM)

"for developing cryo-electron microscopy for the high-resolution structure determination of biomolecules in solution"

Why cryo-EM?

• Does not require crystallization and thus can capture molecules in their native states

• Has the potential to analyze conformationally heterogeneous mixtures and, consequently, can be used to determine the structures of complexes in different functional states

The recent growth in the number of high-resolution structures produced by cryo-EM

Taken from the Electron Microscopy Data Bank public repository.

The resolution revolution

https://www.nobelprize.org/prizes/chemistry/2017/press-release/

Recent survey

Bendory, Bartesaghi, and Singer. "Single-particle cryo-electron microscopy: Mathematical theory, computational challenges, and opportunities." IEEE signal processing magazine 37.2 (2020): 58-76.

Tamir Bendory (Tel Aviv University)

Mathematical model of cryo-EM

Mathematical model of cryo-EM

 $P_i = \text{projection}(\text{rotation}(\phi)) + \text{noise}$

The cryo-EM problem: Estimate 3-D structure ϕ from P_1, \ldots, P_n , while the 3-D rotations are unknown and the SNR is low (say, 1/100).

Multi-reference alignment

Let X be a vector space and G be a group acting on X. Suppose we have n measurements of the form

$$y_i = T(g_i \circ x) + \varepsilon_i, \quad i = 1, \ldots, n,$$

where

- x is an unknown element of X;
- g_1, \ldots, g_n are unknown elements of G;
- \circ is the action of *G* on \mathbb{X} ;
- $T : \mathbb{X} \to \mathbb{Y}$ is a linear operator;
- \mathbb{Y} is the (finite-dimensional) measurement space;
- $\varepsilon'_i s$ are independent noise terms.

Multi-reference alignment

Let X be a vector space and G be a group acting on X. Suppose we have n measurements of the form

$$y_i = T(g_i \circ x) + \varepsilon_i, \quad i = 1, \dots, n,$$

where

- x is an unknown element of X;
- g_1, \ldots, g_n are unknown elements of G;
- \circ is the action of *G* on \mathbb{X} ;
- $T : \mathbb{X} \to \mathbb{Y}$ is a linear operator;
- \mathbb{Y} is the (finite-dimensional) measurement space;
- $\varepsilon'_i s$ are independent noise terms.

Our goal it to estimate the orbit

$$Gx = \{g \circ x | g \in G\}.$$

Example: 1-D discrete MRA

• Recall that we wish to estimate the orbit of $x \in \mathbb{X}$ from

$$y_i = T(g_i \circ x) + \varepsilon_i, \quad g_i \in G, \ i = 1, \dots, n.$$

• Recall that we wish to estimate the orbit of $x \in \mathbb{X}$ from

$$y_i = T(g_i \circ x) + \varepsilon_i, \quad g_i \in G, \ i = 1, \dots, n.$$

• If the g_i were known, then the task of recovering x would reduce to a classical linear inverse problem, for which many effective techniques exist.

• Recall that we wish to estimate the orbit of $x \in X$ from

$$y_i = T(g_i \circ x) + \varepsilon_i, \quad g_i \in G, \ i = 1, \dots, n.$$

- If the g_i were known, then the task of recovering x would reduce to a classical linear inverse problem, for which many effective techniques exist.
- Therefore, the problem reduces to estimating the group elements g_1, \ldots, g_n from the observations y_1, \ldots, y_n .

• Recall that we wish to estimate the orbit of $x \in \mathbb{X}$ from

$$y_i = T(g_i \circ x) + \varepsilon_i, \quad g_i \in G, \ i = 1, \dots, n.$$

- If the g_i were known, then the task of recovering x would reduce to a classical linear inverse problem, for which many effective techniques exist.
- Therefore, the problem reduces to estimating the group elements g_1, \ldots, g_n from the observations y_1, \ldots, y_n .
- The leading methodology to estimate the group elements is called group synchronization, see for example [Singer, '11], [Boumal, '16], [Bandeira et al., '17].

High vs. low SNR

Abbe, Bendory, Leeb, Pereira, Sharon, and Singer. "Multireference alignment is easier with an aperiodic translation distribution." IEEE Transactions on Information Theory 65, no. 6 (2018): 3565-3584.

• In the low SNR regime $n, \sigma \rightarrow \infty$ (fixed dimension *L*), estimating the group elements accurately is challenging.

- In the low SNR regime $n, \sigma \to \infty$ (fixed dimension *L*), estimating the group elements accurately is challenging.
- Remarkably, is was shown that one can estimate the signal even if the group elements cannot be estimated.

- In the low SNR regime $n, \sigma \rightarrow \infty$ (fixed dimension *L*), estimating the group elements accurately is challenging.
- Remarkably, is was shown that one can estimate the signal even if the group elements cannot be estimated.
- In particular, it was shown that if \overline{d} is the lowest degree moment that determines an orbit uniquely, then $n = \omega(\sigma^{2\overline{d}})$ is a necessary condition for accurate recovery [Abbe et al., '18], [Perry et al., '19].

- In the low SNR regime $n, \sigma \rightarrow \infty$ (fixed dimension *L*), estimating the group elements accurately is challenging.
- Remarkably, is was shown that one can estimate the signal even if the group elements cannot be estimated.
- In particular, it was shown that if \overline{d} is the lowest degree moment that determines an orbit uniquely, then $n = \omega(\sigma^{2\overline{d}})$ is a necessary condition for accurate recovery [Abbe et al., '18], [Perry et al., '19].
- Therefore, the question of sample complexity boils down to identifying d
 for a given MRA setup; it may depend on the vector space X, the group G, the linear operator T, and the distribution of group elements.

• 1-D discrete MRA

I-D discrete MRA

▶ if the group elements are drawn from a uniform distribution, then $\bar{d} = 3$. Thus, $n = \omega(\sigma^6)$. [Bendory et al., '17], [Perry et al., '19]

I-D discrete MRA

- ▶ if the group elements are drawn from a uniform distribution, then $\bar{d} = 3$. Thus, $n = \omega(\sigma^6)$. [Bendory et al., '17], [Perry et al., '19]
- ▶ if the group elements are drawn from almost any non-uniform distribution, then $\bar{d} = 2$. Thus, $n = \omega(\sigma^4)$. [Abbe et al., '17]

1-D discrete MRA

- ▶ if the group elements are drawn from a uniform distribution, then $\bar{d} = 3$. Thus, $n = \omega(\sigma^6)$. [Bendory et al., '17], [Perry et al., '19]
- ▶ if the group elements are drawn from almost any non-uniform distribution, then $\bar{d} = 2$. Thus, $n = \omega(\sigma^4)$. [Abbe et al., '17]

• For cryo-EM with a uniform distribution over SO(3) (under some simplifying assumptions), $\bar{d} = 3$. Thus, $n = \omega(\sigma^6)$. [Bandeira et al., '17]

More examples (partial list)

- MRA in 2-D [Ma et al., '19], [Janco and Bendory, '21]
- MRA with projection [Bandeira et al., '17]
- Heterogeneous MRA [Bandeira et al., '17; Boumal et al., '18]
- unprojected cryo-EM [Fan et al, '21; Liu and Moitra, '21]
- dihedral MRA [Bendory et al., '21]
- MRA with dilations [Hirn and Little, '19]
- MRA with the rigid motion group [Bendory et al., '21]
- sparse MRA [Ghosh, Rigollet, '21; Bendory et al. '21]
- learning a rigid body [Bandeira et al., '17; Pumir et al., '21]
- low-rank covariance estimation under unknown translations [Landa and Shkolnisky '21]

• The method of moments achieves the optimal estimation rate (we've implemented the method for cryo-EM experimental datasets [Levin et al., '18], [Bendory et al., '18], [Sharon et al., '20]).

- The method of moments achieves the optimal estimation rate (we've implemented the method for cryo-EM experimental datasets [Levin et al., '18], [Bendory et al., '18], [Sharon et al., '20]).
- In practice, expectation-maximization usually outperforms the method of moments.

- The method of moments achieves the optimal estimation rate (we've implemented the method for cryo-EM experimental datasets [Levin et al., '18], [Bendory et al., '18], [Sharon et al., '20]).
- In practice, expectation-maximization usually outperforms the method of moments.
- In the low SNR regime, matching all the moments is equivalent to maximizing the likelihood function [Katsevich and Bandeira, '21].

- The method of moments achieves the optimal estimation rate (we've implemented the method for cryo-EM experimental datasets [Levin et al., '18], [Bendory et al., '18], [Sharon et al., '20]).
- In practice, expectation-maximization usually outperforms the method of moments.
- In the low SNR regime, matching all the moments is equivalent to maximizing the likelihood function [Katsevich and Bandeira, '21].
- In some MRA models, we conjecture the existence of computation-statistical gaps: these are regimes in which the underlying statistical problem is information-theoretically possible although no efficient algorithm exists [Bandeira et al., '17],[Boumal et al., '18],[Bendory et al., '20], [Bendory et al., '21].

Sample complexity in high dimensions

 For 1-D MRA when n, L, σ → ∞ (with a Gaussian prior), the sample complexity is not determined by the moments but by the ratio

$$\alpha = L/(\sigma^2 \log L).$$

Romanov, Bendory, and Ordentlich. "Multi-reference alignment in high dimensions: sample complexity and phase transition." SIAM Journal on Mathematics of Data Science 3.2 (2021): 494-523.

Sample complexity in high dimensions

 For 1-D MRA when n, L, σ → ∞ (with a Gaussian prior), the sample complexity is not determined by the moments but by the ratio

$$\alpha = L/(\sigma^2 \log L).$$

 When α > 2 the impact of the unknown circular shifts on the sample complexity is minor, and the problem is almost as easy as estimating a signal in additive white Gaussian noise.

Romanov, Bendory, and Ordentlich. "Multi-reference alignment in high dimensions: sample complexity and phase transition." SIAM Journal on Mathematics of Data Science 3.2 (2021): 494-523.

Sample complexity in high dimensions

 For 1-D MRA when n, L, σ → ∞ (with a Gaussian prior), the sample complexity is not determined by the moments but by the ratio

$$\alpha = L/(\sigma^2 \log L).$$

- When α > 2 the impact of the unknown circular shifts on the sample complexity is minor, and the problem is almost as easy as estimating a signal in additive white Gaussian noise.
- In sharp contrast, when $\alpha \leq 2$, the problem is significantly harder and the sample complexity grows substantially quicker with σ^2 .

Romanov, Bendory, and Ordentlich. "Multi-reference alignment in high dimensions: sample complexity and phase transition." SIAM Journal on Mathematics of Data Science 3.2 (2021): 494-523.

• Many exciting open computational challenges in MRA (in information theory, machine learning, signal processing, statistics, algebra, etc.)

- Many exciting open computational challenges in MRA (in information theory, machine learning, signal processing, statistics, algebra, etc.)
- Theoretical and algorithmic results in MRA may have consequences for cryo-EM:

- Many exciting open computational challenges in MRA (in information theory, machine learning, signal processing, statistics, algebra, etc.)
- Theoretical and algorithmic results in MRA may have consequences for cryo-EM:
 - ▶ Reconstructing small molecular structures [Bendory et al., '18]

- Many exciting open computational challenges in MRA (in information theory, machine learning, signal processing, statistics, algebra, etc.)
- Theoretical and algorithmic results in MRA may have consequences for cryo-EM:
 - ▶ Reconstructing small molecular structures [Bendory et al., '18]
 - Reconstructing with fewer observations (in progress)

- Many exciting open computational challenges in MRA (in information theory, machine learning, signal processing, statistics, algebra, etc.)
- Theoretical and algorithmic results in MRA may have consequences for cryo-EM:
 - ▶ Reconstructing small molecular structures [Bendory et al., '18]
 - Reconstructing with fewer observations (in progress)
- Cryo-EM is an alluring example of a challenging data science problem, whose solution will have an immediate impact on all humankind.

References I

Emmanuel Abbe, Tamir Bendory, William Leeb, João M Pereira, Nir Sharon, and Amit Singer. **Multireference alignment is easier with an aperiodic translation distribution**. *IEEE Transactions on Information Theory*, 65(6):3565–3584, 2018.

Emmanuel Abbe, João M Pereira, and Amit Singer.

Estimation in the group action channel. In 2018 IEEE International Symposium on Information Theory (ISIT), pages 561–565. IEEE, 2018.

Afonso S Bandeira, Ben Blum-Smith, Joe Kileel, Amelia Perry, Jonathan Weed, and Alexander S Wein. Estimation under group actions: recovering orbits from invariants. arXiv preprint arXiv:1712.10163, 2017.

Afonso S Bandeira, Yutong Chen, Roy R Lederman, and Amit Singer.

Non-unique games over compact groups and orientation estimation in cryo-EM. Inverse Problems, 36(6):064002, 2020.

Tamir Bendory, Alberto Bartesaghi, and Amit Singer.

Single-particle cryo-electron microscopy: Mathematical theory, computational challenges, and opportunities. *IEEE signal processing magazine*, 37(2):58–76, 2020.

Tamir Bendory, Nicolas Boumal, William Leeb, Eitan Levin, and Amit Singer. Toward single particle reconstruction without particle picking: Breaking the detection limit. arXiv preprint arXiv:1810.00226. 2018.

Tamir Bendory, Nicolas Boumal, Chao Ma, Zhizhen Zhao, and Amit Singer.

Bispectrum inversion with application to multireference alignment. *IEEE Transactions on signal processing*, 66(4):1037–1050, 2017.

References II

Tamir Bendory and Dan Edidin.

Toward a mathematical theory of the crystallographic phase retrieval problem. *SIAM Journal on Mathematics of Data Science*, 2(3):809–839, 2020.

Tamir Bendory, Dan Edidin, William Leeb, and Nir Sharon.

Dihedral multi-reference alignment. arXiv preprint arXiv:2107.05262, 2021.

Tamir Bendory, Ariel Jaffe, William Leeb, Nir Sharon, and Amit Singer.

Super-resolution multi-reference alignment. arXiv preprint arXiv:2006.15354, 2020.

Tamir Bendory, Oscar Mickelin, and Amit Singer.

Sparse multi-reference alignment: sample complexity and computational hardness. arXiv preprint arXiv:2109.11656, 2021.

Nicolas Boumal.

Nonconvex phase synchronization. SIAM Journal on Optimization, 26(4):2355–2377, 2016.

Nicolas Boumal, Tamir Bendory, Roy R Lederman, and Amit Singer.

Heterogeneous multireference alignment: A single pass approach. In 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pages 1–6. IEEE, 2018.

Zhou Fan, Roy R Lederman, Yi Sun, Tianhao Wang, and Sheng Xu. Maximum likelihood for high-noise group orbit estimation and single-particle cryo-EM. *arXiv preprint arXiv:2107.01305*, 2021.

References III

Subhro Ghosh and Philippe Rigollet.

Multi-reference alignment for sparse signals, uniform uncertainty principles and the beltway problem. arXiv preprint arXiv:2106.12996, 2021.

Matthew Hirn and Anna Little.

Wavelet invariants for statistically robust multi-reference alignment. arXiv preprint arXiv:1909.11062, 2019.

Noam Janco and Tamir Bendory.

An accelerated expectation-maximization for multi-reference alignment. arXiv preprint arXiv:2105.07372, 2021.

Anya Katsevich and Afonso Bandeira.

Likelihood maximization and moment matching in low SNR gaussian mixture models. arXiv preprint arXiv:2006.15202, 2020.

Boris Landa and Yoel Shkolnisky.

Multi-reference factor analysis: low-rank covariance estimation under unknown translations. Information and Inference: A Journal of the IMA, 10(3):773–812, 2021.

Eitan Levin, Tamir Bendory, Nicolas Boumal, Joe Kileel, and Amit Singer.

3d ab initio modeling in cryo-EM by autocorrelation analysis.

In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pages 1569–1573. IEEE, 2018.

Allen Liu and Ankur Moitra.

How to decompose a tensor with group structure. arXiv preprint arXiv:2106.02680, 2021.

References IV

Chao Ma, Tamir Bendory, Nicolas Boumal, Fred Sigworth, and Amit Singer.

Heterogeneous multireference alignment for images with application to 2D classification in single particle reconstruction. *IEEE Transactions on Image Processing*, 29:1699–1710, 2019.

The sample complexity of multireference alignment. SIAM Journal on Mathematics of Data Science, 1(3):497–517, 2019.

Thomas Pumir, Amit Singer, and Nicolas Boumal.

The generalized orthogonal Procrustes problem in the high noise regime. Information and Inference: A Journal of the IMA, 10(3):921–954, 2021.

Elad Romanov, Tamir Bendory, and Or Ordentlich.

Multi-reference alignment in high dimensions: sample complexity and phase transition. SIAM Journal on Mathematics of Data Science, 3(2):494–523, 2021.

Nir Sharon, Joe Kileel, Yuehaw Khoo, Boris Landa, and Amit Singer.

Method of moments for 3D single particle ab initio modeling with non-uniform distribution of viewing angles. Inverse Problems, 36(4):044003, 2020.

Amit Singer.

Angular synchronization by eigenvectors and semidefinite programming. Applied and computational harmonic analysis, 30(1):20–36, 2011.