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The resolution revolution

The Zika virus The Ebola virus

In biology, a key idea is that structure determines function

https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2017/; Sugita et al., 2018
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Exciting times for cryo-EM

Method of the Year 2015
“Single-particle cryo-EM is our choice for Method of the

Year 2015 for its newfound ability to solve protein struc-

tures at near-atomic resolution.”

Nobel Prize in Chemistry 2017
“for developing cryo–EM for the high-resolution structure

determination of biomolecules in solution”
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How does it work?

High noise level

 

 

The images of E. coli 50S ribosomal subunit were provided by Dr. Fred Sigworth, Yale Medical School.
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How does it work?

High noise level

Parameters to be estimated vs. nuisance variables

I The goal is to estimate the 3-D structure
I All other unknowns are nuisance variables

The images of E. coli 50S ribosomal subunit were provided by Dr. Fred Sigworth, Yale Medical School.
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Parameter estimation

The most popular techniques in cryo-EM are based on maximum
likelihood estimation:

consistent

asymptotically efficient

hard to compute (usually, involves solving a non-convex,
high-dimensional problem)

Alternative: the method of moments (Pearson, 1894)
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Method of moments

Suppose that the distribution of y is parametrized by x. The goal is to
estimate x from observations of y.

Steps:
1 Derive the population moments
2 Estimate the moments from the data (sample moments)
3 Solve the (polynomial) system of equations

Ey = p1(x)
EyyT = p2(x)

...
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The cryo-EM inverse problem

micrographs
(data)

particle
picking

reconstruction
algorithm
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Image formation model (perfect particle picking)

Projection yi

Molecule

E    lectron 
source

Image formation model
yi = P(Ri ◦ x) + noise, Ri ∈ SO(3)

The cryo–EM problem
Estimate x given y1, . . . , yN

Can we accurately estimate the rotations?

Can we accurately estimate the volume x?

And how?

What is the optimal estimation rate?
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The multi-reference alignment (MRA) problem

Problem: Estimate a signal x ∈ RL, up to cyclic shift, from its noisy
circularly-shifted copies

yi = Rrix + εi, i = 1, . . . ,N, εi ∼ N (0, σ2I)

σ = 0 σ = 0.1 σ = 1.2
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The multi-reference alignment (MRA) problem

Model:
yi = Rrix + εi, i = 1, . . . ,N, εi ∼ N (0, σ2I)

Given the shifts, we can estimate

1
N

N∑
i=1

R−1
ri yi → x

Unbiased estimator, variance σ2/N

Can we estimate the shifts?
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Alignment is impossible in low SNR

Let

η =

{
0, with probablity 1/2,
1, with probablity 1/2.

Let

y =

{
R1x + ε, if η = 0,
R2x + ε, if η = 1,

where ε ∼ N(0, σ2I).
We observe y. How reliably can we estimate η?
The estimator η̂ = 0 is correct with probability 1/2. Can we do
better?

Proposition (Bendory, Boumal, Leeb, Levin, Singer, ’18)
For any deterministic estimator η̂ of η,

lim
σ→∞

Prob(η̂ = η) ≤ 1/2.
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Expectation-maximization for MRA

Model:
yi = Rrix + εi, i = 1, . . . ,N, εi ∼ N (0, σ2I)

Expectation-maximization (EM) is an iterative method to find the
marginalized maximum likelihood.

Assign probabilities (E-step): ωℓ
i ∝ exp

(
− 1

2σ2 ∥Rℓxest − yi∥2
2
)

Update estimate (M-step): xest =
1
N
∑N

i=1
∑L−1

ℓ=0 ωℓ
i R−1

ℓ yi

Works well numerically, but may converge to local optimum (difficult
to analyze mathematically)

Slow in a low SNR environment

Can we achieve similar performance with one pass over the data?

Tamir Bendory (Princeton University) Estimation in extreme noise levels December 12, 2018 15 / 40



Expectation-maximization for MRA

Model:
yi = Rrix + εi, i = 1, . . . ,N, εi ∼ N (0, σ2I)

Expectation-maximization (EM) is an iterative method to find the
marginalized maximum likelihood.

Assign probabilities (E-step): ωℓ
i ∝ exp

(
− 1

2σ2 ∥Rℓxest − yi∥2
2
)

Update estimate (M-step): xest =
1
N
∑N

i=1
∑L−1

ℓ=0 ωℓ
i R−1

ℓ yi

Works well numerically, but may converge to local optimum (difficult
to analyze mathematically)

Slow in a low SNR environment

Can we achieve similar performance with one pass over the data?

Tamir Bendory (Princeton University) Estimation in extreme noise levels December 12, 2018 15 / 40



Expectation-maximization for MRA

Model:
yi = Rrix + εi, i = 1, . . . ,N, εi ∼ N (0, σ2I)

Expectation-maximization (EM) is an iterative method to find the
marginalized maximum likelihood.

Assign probabilities (E-step): ωℓ
i ∝ exp

(
− 1

2σ2 ∥Rℓxest − yi∥2
2
)

Update estimate (M-step): xest =
1
N
∑N

i=1
∑L−1

ℓ=0 ωℓ
i R−1

ℓ yi

Works well numerically, but may converge to local optimum (difficult
to analyze mathematically)

Slow in a low SNR environment

Can we achieve similar performance with one pass over the data?

Tamir Bendory (Princeton University) Estimation in extreme noise levels December 12, 2018 15 / 40



Expectation-maximization for MRA

Model:
yi = Rrix + εi, i = 1, . . . ,N, εi ∼ N (0, σ2I)

Expectation-maximization (EM) is an iterative method to find the
marginalized maximum likelihood.

Assign probabilities (E-step): ωℓ
i ∝ exp

(
− 1

2σ2 ∥Rℓxest − yi∥2
2
)

Update estimate (M-step): xest =
1
N
∑N

i=1
∑L−1

ℓ=0 ωℓ
i R−1

ℓ yi

Works well numerically, but may converge to local optimum (difficult
to analyze mathematically)

Slow in a low SNR environment

Can we achieve similar performance with one pass over the data?

Tamir Bendory (Princeton University) Estimation in extreme noise levels December 12, 2018 15 / 40



Expectation-maximization for MRA

Model:
yi = Rrix + εi, i = 1, . . . ,N, εi ∼ N (0, σ2I)

Expectation-maximization (EM) is an iterative method to find the
marginalized maximum likelihood.

Assign probabilities (E-step): ωℓ
i ∝ exp

(
− 1

2σ2 ∥Rℓxest − yi∥2
2
)

Update estimate (M-step): xest =
1
N
∑N

i=1
∑L−1

ℓ=0 ωℓ
i R−1

ℓ yi

Works well numerically, but may converge to local optimum (difficult
to analyze mathematically)

Slow in a low SNR environment

Can we achieve similar performance with one pass over the data?

Tamir Bendory (Princeton University) Estimation in extreme noise levels December 12, 2018 15 / 40



Expectation-maximization for MRA

Model:
yi = Rrix + εi, i = 1, . . . ,N, εi ∼ N (0, σ2I)

Expectation-maximization (EM) is an iterative method to find the
marginalized maximum likelihood.

Assign probabilities (E-step): ωℓ
i ∝ exp

(
− 1

2σ2 ∥Rℓxest − yi∥2
2
)

Update estimate (M-step): xest =
1
N
∑N

i=1
∑L−1

ℓ=0 ωℓ
i R−1

ℓ yi

Works well numerically, but may converge to local optimum (difficult
to analyze mathematically)

Slow in a low SNR environment

Can we achieve similar performance with one pass over the data?

Tamir Bendory (Princeton University) Estimation in extreme noise levels December 12, 2018 15 / 40



Expectation-maximization for MRA

Model:
yi = Rrix + εi, i = 1, . . . ,N, εi ∼ N (0, σ2I)

Expectation-maximization (EM) is an iterative method to find the
marginalized maximum likelihood.

Assign probabilities (E-step): ωℓ
i ∝ exp

(
− 1

2σ2 ∥Rℓxest − yi∥2
2
)

Update estimate (M-step): xest =
1
N
∑N

i=1
∑L−1

ℓ=0 ωℓ
i R−1

ℓ yi

Works well numerically, but may converge to local optimum (difficult
to analyze mathematically)

Slow in a low SNR environment

Can we achieve similar performance with one pass over the data?

Tamir Bendory (Princeton University) Estimation in extreme noise levels December 12, 2018 15 / 40



Method of moments for MRA

Model:
yi = Rrix + εi, i = 1, . . . ,N, εi ∼ N (0, σ2I)

First moment:
Ey = x ∗ ρ,

where ρ is the distribution of the shifts

Second moment: (up to constant bias term)

EyyT = CxDρCT
x ,

where Cx is a circulant matrix of x and Dρ is a diagonal matrix of ρ

Individual shifts do not appear in the moments.

Is the second moment enough?
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Spectral algorithm

Model:
yi = Rrix + εi, i = 1, . . . ,N, εi ∼ N (0, σ2I)

Algorithm:

1 Compute EyyT = CxDρCT
x

2 Rotate zi = Rsiyi, where si are drawn from the uniform distribution

3 Compute EzzT = 1
LCxCT

x

4 Compute the eigendecomposition of

M = L
(
EyyT) (EzzT)−1

= CxDρC−1
x ,

assuming Cx is invertible.
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Recovery from the second moment

We compute the eigendecomposition of

M = L
(
EyyT) (EzzT)−1

= CxDρC−1
x

Any eigenvector of M associated with a unique entry of ρ is a shifted,
scaled version of x. The scale is fixed by the first moment.

Theorem (Bendory et al.,’17; Abbe et al.,’17; Ma et al.,’18)
1 If Cx is invertible and ρ is non-periodic, then the second moment

determines the signal uniquely (up to cyclic shift).
2 For periodic distributions (e.g., uniform), the third moment is enough.
3 In the low SNR regime, the method of moments achieves the optimal

estimation rate.
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Numerical experiment

10-1 100 101

10-2

10-1

100

MoM is 100 times 
faster than EM

# measurements = 105, 20 trials per point, random signal and distribution of length = 15
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Properties of the method of moments

Easy to compute

Requires only one pass over the data

Parallelizable

Consistent (empirically)
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Application to cryo-EM

Theorem (Levin, Bendory, Boumal, Kileel, Singer, ’17)
A generic volume is determined uniquely from the second moment of the
projection images and two clean projections (under some conditions).

estimated structure (gray), low-resolution structure (yellow), high-resolution structure (blue)
70S ribosome with P-site tRNA, 50, 000 projections of size 1092, L = 10, SNR = 1/10

Based on (Kam, 1980)
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The cryo-EM inverse problem

micrographs
(data)

particle
picking

reconstruction
algorithm

estimation directly
from the micrograph?
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Can we estimate small molecules using cryo-EM?

Common belief: Small molecules cannot be reconstructed using cryo-EM.

Reasoning:

small molecules
⇓

low SNR
⇓

detection is impossible
⇓

3-D reconstruction is impossible

Motivation: If reconstruction is possible without detection, even small
molecules should be within reach for cryo-EM.

For instance, see (Henderson, 1995) and (Frank, ‘17).
Picture credit (Heimowitz et al., ’18)
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Simplified model for cryo-EM (blind deconvolution)

Problem: Multiple occurrences of x are embedded at random locations in
a noisy measurement (micrograph) y

Goal: Estimating x from y

(a) σ = 0 (b) σ = 0.5 (c) σ = 3
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Mathematical formulation

Problem: Estimate x ∈ RL from

y = x ∗ s + ε, ε ∼ N (0, σ2I), s ∈ {0, 1}N

Given s (nuisance variables), estimating x is easy.
But we cannot estimate s in the low SNR regime.
Simplifying assumption: Any two nonzero entries of s are separated
by at least 2L − 1 entries.
Main tool: Autocorrelation analysis

a2
z [ℓ] =

1
L
∑

i
z[i]z[i + ℓ]

a3
z [ℓ1, ℓ2] =

1
L
∑

i
z[i]z[i + ℓ1]z[i + ℓ2]
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Estimating a signal from autocorrelations

In the limit N → ∞:

a2
y[ℓ] = γa2

x[ℓ] + bias, ℓ = 0, . . . , L − 1,
a3

y[ℓ1, ℓ2] = γa3
x[ℓ1, ℓ2] + bias, ℓ1, ℓ2 = 0, . . . , L − 1,

where
γ :=

ML
N ≤ 1.

Theorem (Bendory, Boumal, Leeb, Levin, Singer, ’18)
The signal x, the density γ and noise variance σ2 are determined uniquely
from a2

y and a3
y under mild conditions.

The signal x is determined, without intermediate detection!
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Numerical experiments

Details:
γ and σ are known
Recovery by relaxed-reflect-reflect (RRR)
σ = 3
Micrograph size = 4096 × 4096
Image size = 50 × 50
# micrographs = 2 · 102, 2 · 103, 2 · 104, 2 · 105

700 image occurrences on average per micrograph
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Numerical experiments
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Details:
γ and σ are unknown
Recovery by least-squares
σ = 3
Micrograph size = 10M(2L − 1)
Relative error γ = 4.8%, 4%, 1.2%
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Application to cryo-EM

In the cryo–EM setup, we aim at estimating the
3-D volume directly from the micrograph.

An L-bandlimited 3-D volume is described by ∼ L3 parameters.

We consider a simplified model:

I The projections are separated

I Gaussian noise

I No contrast transfer function

I Uniform distribution of viewing directions
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How does it work for cryo-EM?

We scan the micrographs with a sliding window of size L × L.

We compute the first three autocorrelations of each window with
respect to the center point and average over all windows.

The autocorrelations of the micrographs converge to a scaled, biased
version of the volume’s autocorrelations:

lim
N→∞

a1
y = γ

⟨
a1

Pω(x)

⟩
ω
,

lim
N→∞

a2
y[ℓ1, ℓ2] = γ

⟨
a2

Pω(x)[ℓ1, ℓ2]
⟩
ω
+ bias,

lim
N→∞

a3
y[ℓ1, ℓ2; ℓ3, ℓ4] = γ

⟨
a3

Pω(x)[ℓ1, ℓ2; ℓ3, ℓ4]
⟩
ω
+ bias.

No detection is required!
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Recovery of the volume from its autocorrelations

The third-order autocorrelation contains ∼ L3 independent cubic
equations (rather than L4) that can be related to the ∼ L3

coefficients of the volume.

We estimate the volume’s coefficients and γ by least-squares.

In the absence of noise (empirically): unique mapping between the
volume and γ, and the first three autocorrelations of the data.

Unfortunately, the mapping is highly ill-conditioned, preventing stable
recovery from noisy data.

Solution: Fourth-order autocorrelation! (Future work)
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Recovery from clean autocorrelations

estimated structure (yellow), low-resolution structure (blue), high-resolution structure (purple)

TRPV1, the low-resolution molecule (L = 5) was down-sampled from 1923 to 203 pixels
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Future work

Cryo-EM:
Devising a full computational pipeline that produces high resolution
3-D structures directly from the micrograph:

I Extending the framework to the fourth-order autocorrelation
I A more accurate model

2-D classification (Ma, Bendory, Boumal, Sigworth, Singer, ’18)

What is the sample complexity of cryo-EM?

Signal processing/optimization/statistics:

Efficient moment estimation

The success of non-convex programs

Heterogeneous models of MRA and blind deconvolution
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Phase retrieval

Phase retrieval is the problem of recovering a signal from its Fourier
magnitudes.

Uncovering the double helix structure of the DNA with X-ray crystallography in 1951. Nobel
Prize for Watson, Crick, and Wilkins in 1962 based on work by Rosalind Franklin.
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Single particle reconstruction using
X-ray free-electron laser (XFEL)

XFEL ≈ cryo-EM + phase retrieval

Picture credit: (Gaffney and Chapman, ’07)
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European XFEL

3.4 kilometre-long facility
User operation began in September 2017.
12 countries are participating in the project: Denmark, France, Germany,
Hungary, Italy, Poland, Russia, Slovakia, Spain, Sweden, Switzerland, and
the United Kingdom.
The construction costs amount to 1.25 billion euro.

Picture credit: https://www.xfel.eu
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Thanks for your attention!
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