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Single particle reconstruction using cryo–EM

Why cryo–EM?

Mapping the structure of molecules without crystallizing them

Imaging of heterogeneous samples, with mixtures of molecules or
multiple conformations
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The resolution revolution

A protein complex that
governs the circadian
rhythm (sleep/wake cy-
cle)

A sensor of the type that
reads pressure changes in
the ear

The Zika virus

https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2017/
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Exciting times for cryo–EM

Method of the Year 2015

“Single-particle cryo-EM is our choice for Method of the

Year 2015 for its newfound ability to solve protein struc-

tures at near-atomic resolution.”

Nobel Prize in Chemistry 2017

“for developing cryo–EM for the high-resolution structure

determination of biomolecules in solution”
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Image formation model and inverse problem

Projection Ii

Molecule

E    lectron 
source

Image formation model

Ii = P(Ri ◦ X ) + noise, Ri ∈ SO(3)

The cryo–EM problem

Estimate X given I1, . . . , IN

The heterogeneity problem

Estimate X1, . . . ,XK given I1, . . . , IN
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Fundamental challenges

1 Unknown viewing directions

Orientation Estimation: Fourier projection-slice theorem

Projection Ii

Projection Ij

Îi

Îj

3D Fourier space

3D Fourier space

(xij , yij)

(xji , yji )

Ricij cij = (xij , yij , 0)
T

Ricij = Rjcji

Amit Singer (Princeton University) June 2016 12 / 32
[Singer and Shkolnisky (2011)]
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Fundamental challenges

1 Unknown viewing directions

2 Challenging SNR regime

 

 

The images of E. coli 50S ribosomal subunit were provided by Dr. Fred Sigworth, Yale Medical School.
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Fundamental challenges

1 Unknown viewing directions

2 Challenging SNR regime

3 Massive datasets

2.2 Å resolution ⇐⇒ 12.4 TB

Bartesaghi et al. ”2.2 Åresolution cryo-EM structure of β–galactosidase in complex with a cell-permeant inhibitor.”
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The multireference alignment problem

Problem: Estimating a signal x ∈ RL, up to cyclic–translation, from its
noisy circularly–translated copies

yi = Rri x + εi , i = 1, . . . ,N, εi ∼ N (0, σ2I )

σ = 0 σ = 0.1 σ = 1.2

Tamir Bendory (Princeton University) Estimation below the identifiability limit January 23, 2018 9 / 33



The multireference alignment problem

Problem: Estimating a signal x ∈ RL, up to cyclic–translation, from its
noisy circularly–translated copies

yi = Rri x + εi , i = 1, . . . ,N, εi ∼ N (0, σ2I )

σ = 0 σ = 0.1 σ = 1.2

Tamir Bendory (Princeton University) Estimation below the identifiability limit January 23, 2018 9 / 33



Connection with the cryo–EM problem

The problem is mainly inspired by the cryo–EM problem:

yi = P(Ri ◦ X ) + noise, X ∈ R3, Ri ∈ SO(3)

Cryo–EM MRA

Signal 3D continuous signal 1D discrete signal

Latent variables 3D rotations cyclic translations

Linear operator tomographic projection no projection

Interesting regime low SNR, large N low SNR, large N
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Multireference alignment via alignment

Model
yi = Rri x + εi , i = 1, . . . ,N, εi ∼ N (0, σ2I )

Given the translations, we can estimate

1

N

N∑
i=1

R−1
ri

yi → x

This is an unbiased estimator with variance σ2/N.

Can we estimate the translations?
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Alignment
<

 =
 0

Observation 1 Observation 2 Cross-correlation

<
 =

 0
.1

<
 =

 0
.7

<
 =

 2

Alignment is impossible in the low SNR regime!
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Information-theoretic limits

Can we reconstruct the signal accurately while estimating most
shifts poorly?

Lower bounds:

I If ri ∼ U[0, . . . , L− 1], then N & σ6. [Bandeira, Rigollet, Weed (2017)]

I For almost any other translation distribution, N & σ4. [Abbe, B, Leeb,

Pereira, Sharon, Singer (2017)]

It is possible to accurately reconstruct the signal from sufficiently
many noisy shifted copies for arbitrarily low SNR.

Note that if the shifts are known, then N & σ2. The fact that shifts
are not known has a big impact.

Can we achieve the optimal estimation rate?
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Expectation–maximization

An iterative method to find maximum marginal likelihood:

xk+1 =
1

N

N∑
i=1

L−1∑
`=0

ω`,ik R−1
` yi , ω`,ik ∝ exp

(
− 1

2σ2
‖R`xk − yi‖2

2

)

Good numerical performance

At poor SNR, requires many iterations

Can we achieve similar performance with only one pass over the data?
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Cyclic-shift invariant features

We need the first three moments to determine a signal

(mean) µx := x̂ [0]/L

(power spectrum) Px [k] := x̂ [k]x̂ [k] = |x̂ [k]|2

(bispectrum) Bx [k, `] := x̂ [k]x̂ [`]x̂ [`− k]

Stable recovery using a non-convex least-squares

min
z
|µz − µ̃x |2 + λ1

∥∥∥Pz − P̃x

∥∥∥2

2
+ λ2

∥∥∥Bz − B̃x

∥∥∥2

F

Algorithms and analysis are provided in ”Bispectrum inversion with application to multireference
alignment”, Bendory, Boumal, Ma, Zhao and Singer.
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Multireference alignment by invariant features

The invariant features can be estimated from the data:

M1 :=
1

N

N∑
i=1

µyi → µx , Var (M1) ∼ σ2/N,

M2 :=
1

N

N∑
i=1

Pyi → Px + σ2L1, Var (M2) ∼ σ4/N,

M3 :=
1

N

N∑
i=1

Byi → Bx + µxσ
2L2A, Var (M3) ∼ σ6/N.

Achieving the optimal estimation rate σ6/N

Computational complexity linear in N (requires only one pass over the data)
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Numerical example

2 4 6 8 10 12 14 16 18 20

0
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0.6

0.7
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0.9

1 true signal
invariant features
EM

10 20

-2

0

2

10 20

-2

0

2

10 20

-2

0

2

N = 105, σ = 1.5. Running time: invariants features = 2.1 [sec], EM = 67.2 [sec]
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Multireference alignment with heterogeneity

Problem: Estimating a set of signals x1, . . . , xK from their noisy,
unlabeled, circularly-translated copies

yi = Rri xvi + εi , i = 1, . . . ,N.

vi = k with probability wi , w ∈ ∆K .

In the low SNR regime, clustering is also impossible

Can we reconstruct the signals accurately while estimating most
shifts and clusters poorly?

Boumal, Bendory, Lederman and Singer. ”Heterogeneous multireference alignment: a single
pass approach.”
Tamir Bendory (Princeton University) Estimation below the identifiability limit January 23, 2018 18 / 33
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Mixed invariant feature

We can estimate the mixed invariant features from the data:

M1 :=
1

N

N∑
j=1

µyj →
k∑

i=1

wiµxi ,

M2 :=
1

N

N∑
j=1

Pyj →
k∑

i=1

wiPxi + σ2L1, ,

M3 :=
1

N

N∑
j=1

Byj →
k∑

i=1

wiBxi +

(
k∑

i=1

wiµxi

)
σ2L2A.

Signal estimation by non-convex least-squares
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Numerical results

10-1 100
10-4

10-2

100 Average relative estimation error of the signals

mixed invariants
EM

10-1 100

Noise level 

100

102

104 Average computation time [sec]

mixed invariants
EM

L = 50, K = 2 with i.i.d. normal entries, N = 2 × 106, 20 repetitions
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2D classification for cryo–EM

Goal: Given N noisy cryo–EM images, estimate accurately K � N
representative images

Simplified example: Set of rotated copies of 2 images

Ongoing project with Chao Ma, Nicolas Boumal and Amit Singer
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2D classification for cryo–EM

Simplified example: Estimate 2 images, up to rotation, from their noisy
rotated copies

Noisy rotated images: (SNR = 1/50):
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Invariants of a steerable basis

Each image can be expanded by a steerable basis

X (r , θ) =
∑
k,q

Ak,qu
k,q(r , θ),

satisfying

X (r , θ − α) =
∑
k,q

Ak,qe
−ιkαuk,q(r , θ).

The rotationally-invariant features are:

(mean) A0,q, ∀q
(power spectrum) Ak,q1Ak,q2 , ∀k , q1, q2

(bispectrum) Ak1,q1Ak2,q2Ak2−k1,q3 , ∀k1, k2, q1, q2, q3
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Algorithm for 2D classification

1 Expand each image in a steerable basis

2 Compute the rotationally-invariant features

3 Average over all images to estimate the mixed invariant features

4 Solve a non-convex least-squares
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Numerical example

Estimated images (5000 images per class, SNR = 1/50):
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The invariants of the cryo–EM problem

Theorem (Levin, B, Boumal, Kileel, Singer)

If the viewing directions are drawn from the uniform distribution, then the
second moment of the projections and two clean images determine the
molecule, up to global rotation.

Requires one pass over the data (very fast, computational complexity
linear in N)

These conditions are not met in practice and therefore only
low-resolution estimation is possible
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3D ab-initio modeling

EMDB 5360, 50, 000 projections, SNR = 1/10

estimation low-resolution “ground truth”
“ground truth”

Levin, Bendory, Boumal, Kileel and Singer. ”3D ab initio modeling in cryo-EM by autocorrelation analysis.”
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Single Particle Reconstruction using
X-ray Free-Electron Laser (XFEL)

XFEL ≈ cryo–EM + phase retrieval

[Gaffney and Chapman (2007)]
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Main theoretical questions

Non-convex optimization

Why is it so effective for cryo–EM and multireference alignment?

Reasons for optimism: Recent developments in statistical estimation
problems, such as phase retrieval, blind deconvolution, matrix completion
and phase synchronization

Information-theoretic limit

What is the sample complexity of the cryo–EM problem?

Partial results:
Levin, Bendory, Boumal, Kileel and Singer. ”3D ab initio modeling in cryo-EM by
autocorrelation analysis.”

Bandeira et al. ”Estimation under group actions: recovering orbits from invariants.”
arXiv:1712.10163 (2017).
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Thanks for your attention!
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