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Abstract

Alternative splicing is a key cellular mechanism for generating
distinct isoforms, whose relative abundances regulate critical
cellular processes. It is therefore essential that inclusion levels of
alternative exons be tightly regulated. However, how the precision
of inclusion levels among individual cells is governed is poorly
understood. Using single-cell gene expression, we show that the
precision of inclusion levels of alternative exons is determined by
the degree of evolutionary conservation at their flanking intronic
regions. Moreover, the inclusion levels of alternative exons, as well
as the expression levels of the transcripts harboring them, also
contribute to this precision. We further show that alternative
exons whose inclusion levels are considerably changed during stem
cell differentiation are also subject to this regulation. Our results
imply that alternative splicing is coordinately regulated to achieve
accuracy in relative isoform abundances and that such accuracy
may be important in determining cell fate.
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Introduction

Most mammalian genes are alternatively spliced and produce

several protein isoforms, which may have different cellular func-

tions (Matlin et al, 2005; Pan et al, 2008; Wang et al, 2008). This

process is considered essential for the evolution of functional

complexity in higher eukaryotes (Nilsen & Graveley, 2010). Inclu-

sion levels of alternative exons are determined by the combined

action of different splicing factors, which bind to the alternative

exons and their flanking intronic regions (FIRs) (Smith & Valcárcel,

2000; Mabon & Misteli, 2005; Wang et al, 2008; Nilsen & Graveley,

2010). Specific inclusion levels of various alternative exons are

essential for many cellular functions that determine cell fate

(Kalsotra & Cooper, 2011). Stochasticity in the regulation of alterna-

tive splicing was suggested to lead to heterogeneity in the inclusion

levels of alternative exons among individual cells (Waks et al,

2011). Dysregulation of inclusion levels has indeed been shown to

lead to cellular dysfunctions that result in different human diseases

(Venables, 2004, 2006; Tazi et al, 2009; Biamonti et al, 2012;

Chepelev & Chen, 2013). However, what determines the precision of

inclusion levels at the individual cell level is still poorly understood.

Studies have shown that FIRs of alternative exons are enriched

with splicing regulatory sequences and are evolutionarily conserved

to a greater degree than FIRs of constitutive exons (Sorek & Ast,

2003; Barash et al, 2010), implying that they may contribute to the

regulation of the precision of inclusion levels. To examine this role

of FIR conservation, we focused on the cassette type of alternative

exons and compiled a dataset of all human cassette exons

(Table EV1). To identify cassette exons with highly conserved FIRs,

we computed the evolutionary conservation of up to 200 base pairs

(bp) upstream and downstream of each cassette exon. This revealed

that the evolutionary conservations of the upstream and the

downstream FIRs are highly correlated (Spearman’s correlation

coefficient = 0.69; P < 10�16; Fig 1A) and that they both follow a

right-skewed distribution, in which only a small fraction of cassette

exons have highly conserved FIRs (Fig 1B). We found, moreover,

that highly conserved FIRs are enriched with binding motifs of

known splicing factors (Tables EV2 and EV3). These observations

led us to hypothesize that highly conserved FIRs, which are also

associated with splicing regulatory motifs, may play an important

role in regulating the precision of their corresponding cassette exon

inclusion levels in an individual cell. Therefore, in a homogeneous

cell population, we expect that cassette exons with highly conserved

FIRs will exhibit significantly lower variability in their inclusion

levels than cassette exons with weakly conserved FIRs.

Using single-cell gene expression data from three different cell

types, we reveal that splicing of cassette exons is tightly regulated to
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achieve among-cell precision in relative isoform abundances. We

find that this regulation is determined by the conservation level at

FIRs of cassette exons, by their inclusion levels, and by the overall

expression levels of their corresponding included and skipped

isoforms. We further discover that cassette exons whose inclusion

levels have been shown to shift dramatically between stem cells and

differentiated cells are also subject to such regulation, implying a

role of this type of regulation in stem cell differentiation. Our obser-

vations thus shed light on what regulates the precision of alternative

splicing at the single-cell level.

Results and Discussion

Splicing of a cassette exon can be viewed as a Bernoulli experi-

ment resulting in either its inclusion or its exclusion (Waks et al,

2011; Xiong et al, 2011; Wang & Zhou, 2014). Given the properties

of a binomial distribution, it is expected that in addition to FIR

conservation, dominant exclusion or inclusion levels of cassette

exons (i.e. near 0 or 1, respectively), as well as high expression

levels of their corresponding isoforms, will reduce the variability

of inclusion levels in individual cells from a homogeneous cell

population (illustrated in Appendix Fig S1). To estimate the effect

of FIR conservation on the precision of inclusion levels, we

measured the expression levels of 44 pairs of included and skipped

isoforms obtained from alternative splicing of 22 cassette exons

with highly conserved FIRs and 22 cassette exons with weakly

conserved FIRs (herein termed conserved and non-conserved

groups, respectively) (Fig 1B and Table EV1). Measurements were

taken in single cells from homogeneous cell populations. To reduce

potential variation, the tested cells were isolated from distinct sub-

colonies.

To assess the effects of inclusion and expression levels on the

precision of inclusion levels, we used mRNA isolated from total cell

populations (herein bulk RNA) to verify that both the conserved

and non-conserved groups exhibit broad ranges of inclusion and

expression levels (Appendix Fig S2A and B, respectively). In addi-

tion, to estimate the possible effects of different cell types on the

A B

Figure 1. Evolutionary conservation at FIRs of cassette exons.

A Evolutionary conservations at upstream and downstream FIRs are strongly correlated (Spearman’s correlation coefficient = 0.69; P < 10�16). Each point represents
the average of up to 200-bp position-specific evolutionary conservation scores at upstream and downstream FIRs of the 2,731 cassette exons in our data (Table EV1).

B Histograms of the evolutionary conservation scores at upstream (left panel) and downstream (right panel) FIRs display a right-skewed distribution. FIR conservations
of the 22 conserved and 22 non-conserved cassette exons selected for the single-cell RT–qPCR assay are denoted by red and blue points, respectively.

Source data are available online for this figure.

▸Figure 2. Single-cell RT–qPCR data.

A Heat maps of the expression levels (in ln(Et) units) of included and skipped isoforms of the cassette exons. Gene names of the conserved (red) and non-conserved
(blue) cassette exons are in rows, and single-cell samples of each of the three cell types are in columns.

B Heat maps of the estimated inclusion levels of the cassette exons.
C Dependence of the variance of the cassette exon inclusion levels (y-axis) on their mean inclusion levels (x-axis) in the RT-qPCR data. Each point represents a cassette

exon. This dependence resembles the dependence expected under the assumption that inclusion or exclusion of a cassette exon is a Bernoulli experiment
(Appendix Fig S1).

D FIR conservation increases the precision of inclusion levels. The left panel shows the variance of the transformed inclusion levels as a function of the cassette exon
FIR conservation group. The right panel shows the effects (red and blue points) of the two FIR conservation groups on the variance of their inclusion levels as
determined by the GLMM analysis along with their standard errors (dashed lines).

E High expression levels of the included and skipped transcripts increase the precision of their inclusion levels. The left panel shows the variance of the transformed
inclusion levels as a function of the cassette exon expression levels. The right panel shows the effect (solid line) of expression level on the variance of inclusion levels
as determined by the GLMM analysis, along with their standard errors (dashed lines).

F Precision of inclusion levels is independent of cell type. The left panel shows the variance of the transformed inclusion levels as a function of cell type. The right panel
shows the effects (points) of the three cell types on the variance of inclusion levels as determined by the GLMM analysis, along with their standard errors (dashed
lines).

Source data are available online for this figure.
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precision of inclusion levels, we selected three different human cell

lines (293T, MCF7, and U937), which originate from different

tissues and in which all of the selected cassette exons are robustly

expressed. Overall, we measured the expression of each of the 88

isoforms from the two FIR conservation groups in 27 single cells for

each of the three cell types, using single-cell microfluidic multiplex

RT–qPCR (Tables EV4 and EV5).

Subsequent to quality filtering, we estimated the expression

levels (as the sum of the expression of included and skipped

isoforms) and the inclusion levels of all cassette exons (Fig 2A and

B, respectively, and Materials and Methods). Comparing the inclu-

sion levels computed from the total cell populations and those

inferred from the single-cell experiment (Materials and Methods)

showed no significant differences, indicating that our single-cell

experiment did not introduce biases in inclusion levels

(Appendix Fig S2C). We additionally ruled out the possibility that

the efficiencies of our primer pairs are biased toward either of the

FIR conservation groups (P = 0.46; see Materials and Methods for

details and Appendix Fig S2D). Examination of the relationship

between the variance and the mean of inclusion levels across all

samples revealed, as expected (Fig 2C), that cassette exons with

extreme inclusion levels (near 0 or 1) exhibit lower variability in

their inclusion levels than cassette exons with moderate inclusion

levels (near 0.5). This demonstrated that the precision of inclusion

levels of a cassette exon is strongly affected by the level of its inclu-

sion. We observed that this relationship is not affected by expres-

sion levels, as inclusion levels were found not to be correlated with

expression levels (Pearson’s correlation coefficient = �0.02;

P = 0.8; Appendix Fig S3). Next, we examined the effects of FIR

conservation, expression level, and cell type on the variance of

inclusion levels. To eliminate the effect of inclusion levels on their

variance, we first applied a variance-stabilizing transformation to

the estimated inclusion levels (Materials and Methods). Thereafter,

to estimate the effect of FIR conservation on the variance of the

transformed inclusion levels, while accounting for the effects of

expression level (and any difference in expression levels between

the conserved and non-conserved groups) and cell type, we fitted a

generalized linear mixed effects model (GLMM, Materials and Meth-

ods) to these data (see model diagnostics in Appendix Fig S4). This

analysis revealed that FIR conservation makes a significant

contribution to the model (P = 0.033; likelihood ratio test, LRT) and

indeed has a significant negative effect on the variance of inclusion

levels (estimated coefficient = �0.54; standard error (SE) = 0.24,

P = 0.023; Fig 2D), thus confirming our hypothesis. Furthermore, as

expected from the Bernoulli model, the expression level contributes

significantly to the model (P = 1.3 × 10�7; LRT) and has a signifi-

cant negative effect on the variance of inclusion levels (estimated

coefficient = �1.24 × 10�5, with SE = 1.8 × 10�6; P = 3.24 × 10�10,

Fig 2E). Finally, cell type was found not to contribute significantly

to the model (P = 0.91; LRT, Fig 2F). A control experiment was

performed in order to confirm that these results reflect inherent cell-

to-cell variability in inclusion levels and not technical factors inher-

ent to our experimental setup. In this control experiment, we used

the same microfluidic multiplex RT–qPCR platform to measure the

expression levels of the same 88 isoforms in 27 technical replicates,

from the same three cell types. To this end, bulk RNA was diluted

to a concentration which is lower than the RNA concentration in a

single cell, hence allowing a conservative estimate of the technical

variance (see Materials and Methods for details, Tables EV6 and

EV7, and Fig EV1 for data). Comparison between the control experi-

ment and the single-cell experiment revealed that the expression

levels are significantly lower in the control experiment than in the

single-cell experiment (P < 2 × 10�16), which is expected since in

the control experiment we diluted RNA to below single-cell concen-

trations. While the inclusion levels of all cassette exons in the

control experiment were found to vary significantly more than

expected under the binomial distribution (P < 0.05 for all cassette

exons; chi-square test), indicating a baseline technical noise, the

variance of inclusion levels in this experiment was, nevertheless,

significantly lower than the variance of inclusion levels in the

single-cell experiment (P = 0.03). Similar to the single-cell experi-

ment, a relationship between the variance of inclusion levels and

their mean, which is expected under the Bernoulli model of alterna-

tive splicing (Fig EV1C), was observed in the control experiment.

Modeling the variance of inclusion levels (see model diagnostics

in Appendix Fig S5) detected a significant contribution of mean

expression levels (P = 0.007; LRT) with a significant negative effect

(estimated coefficient = �4.02 × 10�6, with SE = 5.49 × 10�7;

P = 6.75 × 10�7, Fig EV1D), which again is expected under the

Bernoulli model of alternative splicing. However, in contrast to

inclusion and expression levels, FIR conservation was not found to

have a significant effect on the variance of inclusion levels

(P = 0.076; LRT). These results indicate that the precision of inclu-

sion levels of a cassette exon is significantly determined by three

factors: its FIR conservation, its inclusion level, and the expression

levels of both its included and its skipped isoforms, each of which is

a significant contributor to the precise balance between the alterna-

tive isoforms, even when the contribution of the other two factors is

taken into account. Furthermore, the lack of a significant effect of

cell type on the variance of inclusion levels suggests that regulation

of the precision of inclusion levels is a general phenomenon that is

not cell type specific.

Having established a relationship between FIR conservation and

the precision of inclusion levels, we performed a Gene Ontology

(GO) analysis (Eden et al, 2009) to determine the biological

processes in which genes harboring cassette exons with conserved

FIRs are enriched. This analysis revealed a significant enrichment of

developmental processes (Table EV8), suggesting that the precision

of cassette exon inclusion levels may play a key role in cells under-

going processes such as differentiation in stem cells. Shifts in inclu-

sion levels of various alternative exons between stem cells and

differentiated cells (referred to here as differentiation-switched

cassette exons) have indeed been proposed as one of the mecha-

nisms controlling stem cell differentiation (Gabut et al, 2011; Han

et al, 2013; Venables et al, 2013; Irimia et al, 2014). We therefore

tried to determine what affects the precision of cassette exon inclu-

sion levels in stem cells, focusing on differentiation-switched

cassette exons shown to undergo substantial changes in their inclu-

sion levels during stem cell differentiation (Han et al, 2013). We

investigated this by estimating inclusion and expression levels

(Materials and Methods) from a single-cell RNA-seq data generated

from two populations of undifferentiated human embryonic stem

cells (hESCs) (Yan et al, 2013). One population, denoted by P0,

consists of eight samples of cells that were not permitted to undergo

any passages, and the second population, denoted by P10, consists

of 26 samples from cells that underwent ten passages (Fig 3A and B
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Figure 3. Single-cell human embryonic stem cell data.

A Heat maps of the expression levels (in ln(FPKM) units) of the genes harboring the differentiation-switched cassette exons. Gene names of the differentiation-switched
cassette exons are in rows (the CADPS and KIF13A genes harbor two differentiation-switched cassette exons which are labeled CADPS.e1 and CADPS.e2 and KIF13A.e1
and KIF13A.e2), and single-cell samples of each of the two cell populations are in columns.

B Heat maps of the estimated inclusion levels of the differentiation-switched cassette exons.
C Dependence of the variance of differentiation-switched cassette exon inclusion levels (y-axis) on their mean inclusion levels (x-axis). The color code for each cassette

exon is given in the right panel. This dependence resembles the expected dependence under the assumption that inclusion or exclusion of a cassette exon is a
Bernoulli experiment (Appendix Fig S1).

D FIR conservation increases the precision of inclusion levels. The left panel shows the variance of the transformed inclusion levels as a function of the differentiation-
switched cassette exon FIR conservation. The right panel shows the effect (solid line) of FIR conservation of differentiation-switched cassette exons on the variance of
their inclusion levels as determined by the GLMM analysis along with their standard errors (dashed lines).

E High expression levels of transcripts harboring the differentiation-switched cassette exons increase the precision of their inclusion levels. The left panel shows the
variance of the transformed inclusion levels as a function of the differentiation-switched cassette exon expression levels. The right panel shows the effect (solid line)
of expression level on the variance of inclusion levels as determined by the GLMM analysis, along with their standard errors (dashed lines).

F Cell population has a negligible effect on the precision of inclusion levels. The left panel shows the variance of the transformed inclusion levels as a function of the
cell population. The right panel shows the effects (points) of the two cell populations on the variance of inclusion levels as determined by the GLMM analysis, along
with their standard errors (dashed lines).

Source data are available online for this figure.
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and Table EV9). As both expected and observed in the RT–qPCR

data (Fig 2C), the variance of inclusion levels of the differentiation-

switched cassette exons showed strong dependence on their mean

inclusion levels, with lower variances near mean inclusion levels

close to 0 and 1 and higher variances near mean inclusion levels

close to 0.5 (Fig 3C). After eliminating dependence on the inclusion

levels using the variance-stabilizing transformation (Materials and

Methods), as with the RT–qPCR data, we observed that variability

of inclusion levels declines with increasing FIR conservation of dif-

ferentiation-switched cassette exons (Fig 3D). To quantify this rela-

tionship, we fitted a GLMM (Materials and Methods) to these data

(see model diagnostics in Appendix Fig S6). This analysis revealed

that FIR conservation contributes significantly to the model

(P = 0.002; LRT) and has a corresponding significant negative effect

on the variance of inclusion levels (estimated coefficient = �2.03,

SE = 0.26, P = 2.87 × 10�4; Fig 3D). Expression level was also

found to contribute significantly to the model (P = 0.042; LRT), with

a significant negative effect on the variance of inclusion levels

(estimated coefficient = �0.015, SE = 0.007; P = 0.0027, Fig 3E).

Although both cell populations originated from the same embryonic

state, the P10 population could have begun to differentiate and thus

might show a different pattern of precision in inclusion levels.

Therefore, we chose to distinguish between them in the analysis.

This, however, was not found to be the case as cell population was

not found to contribute significantly to the model (P = 0.066; LRT),

indicating that it does not significantly affect the precision of inclu-

sion levels in these data (estimated coefficient = 0.35, SE = 0.18;

P = 0.059, Fig 3F). These results therefore corroborate our findings

from the single-cell RT–qPCR analysis, again indicating that the

precision of inclusion levels of cassette exons is significantly

affected by their FIR conservation, as well as by their inclusion

levels, and the expression levels of their corresponding isoforms.

The finding that differentiation-switched cassette exons are

subject to this type of regulation in stem cells suggests an important

role for precision of their inclusion levels in stem cell differentiation.

This may allow stem cells to tightly maintain their stem cell state,

preventing leakage toward differentiation in the absence of a dif-

ferentiation signal. It may also provide a mechanism by which dif-

ferentiating stem cells can faithfully adhere to a developmental axis,

thus avoiding drift toward abnormal differentiation pathways

(Chepelev & Chen, 2013). As an example, the cassette exon with the

most highly conserved FIRs in our data is exon AS4 of the NRXN1

gene (Table EV1). The NRXN gene family mediates synaptogenesis

(Li et al, 2007) and has been implicated in complex neurodevelop-

mental and neuropsychiatric disorders, such as autism spectrum

disorders and schizophrenia (Südhof, 2008; Reichelt et al, 2012).

Alternative splicing of AS4 modulates the interaction of NRXN1 with

several ligands (Li et al, 2007; Südhof, 2008) with different synaptic

functions (Boucard et al, 2005; Chih et al, 2006; Iijima et al, 2011).

Remarkably, AS4 is a differentiation-switched cassette exon that

shows high precision in its inclusion levels in the hESC data (Fig 3D

and Table EV9).

Taken together, our results suggest that splicing of certain

cassette exons is subject to tight regulation to facilitate the precision

of their inclusion levels among cells in a homogeneous population.

Our main finding indicates that this precision in inclusion levels is

under strong selective pressure, as manifested by the conservation

of FIRs of such cassette exons. Our results also emphasize the

Bernoulli nature of alternative splicing by revealing that high preci-

sion of inclusion levels can be achieved through high expression

levels and/or extreme inclusion levels. In line with our findings

suggesting that the relative abundances of the included and the

skipped isoforms are tightly regulated, aberrant variations in

isoform abundances have been shown to lead to abnormal cellular

functions, changes in cell fate, and cancer (Venables, 2004; David &

Manley, 2010; Biamonti et al, 2012). Ensuring high precision in

inclusion levels of cassette exons may therefore be a possible mech-

anism for avoiding such cellular malfunctions.

Materials and Methods

Human cassette exon data

The tables of the human genome hg19 assembly RefSeq (Pruitt et al,

2007) transcriptome (knownToRefSeq) and the University of

California Santa Cruz (UCSC) genome browser (Kuhn et al, 2013)

alternative events (knownAlt) were downloaded from the UCSC

genome browser. The cassette-type alternative exons from the

knownAlt table were selected and further filtered to retain only

cassette exons that are annotated in the knownToRefSeq table. Only

cassette exons, for which we found at least one pair of included and

skipped transcripts in the knownToRefSeq table, were further

selected. To compute FIR conservation at 200 bp upstream and

downstream positions of all cassette exons, we used the UCSC

genome browser phastCons46way table, which provides a normal-

ized position-specific evolutionary conservation score (in the range

of [0,1]), based on a multiple sequence alignment of 33 placental

mammalian genomes. To avoid using FIR sequences that are part of

a coding region in other transcripts (according to the more extensive

transcriptome annotation—the UCSC genome browser knownGene

table), these overlapping sequences were not included in the

analyzed FIR sequences. Cassette exons harboring more than 100-

bp overlap with a coding region in either their upstream or their

downstream FIR were not included in the analysis. As a result of all

these filtering steps, 2,731 cassette exons were retained

(Table EV1).

Enrichment analysis of splicing factor binding motifs at cassette
exon flanking intronic regions

To determine whether cassette exons with conserved FIRs are

enriched in splicing factor binding motifs, we first searched for FIR-

enriched k-mers using DRIMust (Leibovich et al, 2013), a tool for

identifying short motifs in a ranked list of nucleic acid sequences.

We performed this analysis independently for upstream and down-

stream FIR sequences ranked by their conservation scores, using a

motif length range of 5–11 bp, which covers the range of annotated

binding motifs of known splicing factors (Cook et al, 2011; Ray

et al, 2013) (Tables EV2 and EV3). To avoid detecting enrichment

of sequences that are part of the branch site, polypyrimidine tract,

or 30 and 50 splice sites, these splicing sequences were predicted

with SROOGLE (Schwartz et al, 2009) and removed from the

inspected FIR sequences. Next, we computed the similarity of all the

significantly enriched k-mers reported by DRIMust (false discovery

rate (FDR)-corrected (Benjamini & Hochberg, 1995) P < 0.05 in both
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cassette exon groups) to a list of motifs of known splicing factors

(Cook et al, 2011; Ray et al, 2013) (Tables EV2 and EV3), using the

TOMTOM tool (Gupta et al, 2007) and retaining all hits with FDR-

corrected P < 0.05.

Gene ontology enrichment analysis of cassette exons with
conserved flanking intronic regions

To determine whether cassette exons with conserved FIRs are

enriched in specific biological processes, we performed a GO

enrichment analysis using the GOrilla tool (Eden et al, 2009). The

input to GOrilla was the list of genes harboring the cassette exons

in our data (Table EV1) ranked by their mean upstream and

downstream FIR evolutionary conservation scores. The output of

GOrilla is GO terms that are enriched in the genes at the top of

the list. Genes harboring more than a single cassette exon were

removed from this analysis.

Single-cell RT–qPCR assay

Selection of cassette exons

The following criteria were used for selecting the cassette exons

for the single-cell RT–qPCR assay. First, to estimate the effect of

FIR conservation on the precision of inclusion levels, we selected

two groups each containing 22 cassette exons, where one group

included cassette exons with highly conserved FIRs and the other

included weakly conserved FIRs (Fig 1B). To account for the

possible effects of expression level and inclusion levels on the

precision of inclusion levels, we also required that the expression

levels of included and skipped isoforms of the selected cassette

exons and their inclusion levels should span a wide range

(Appendix Fig S2A and B). Finally, we required that each of our

selected cassette exons be expressed in the three different cell

types, according to the BioGPS database (Su et al, 2004; Wu et al,

2009). This was further verified by RT–qPCR experiments

(Table EV10). The list of the selected cassette exons is provided in

Table EV1.

Cell lines and sub-cloning

Human embryonic kidney 293T and breast cancer MCF7 cells were

grown in DMEM with 10% fetal calf serum (FCS). Human U937

cells (established from a histiocytic lymphoma) were grown in

RPMI 1640 with 10% FCS. Homogeneous cell populations were

then obtained by two cycles of sub-cloning. For each cell line,

single cells were seeded at a low density and allowed to propagate

until single colonies were generated. Several of these colonies

were then selected and dissociated to single cells. Small portions

of these cells were seeded again at low density to generate a

second round of sub-clones. The remaining cells were reseeded,

grown, and harvested to prepare bulk RNA samples of the total

cell population. Sub-clones in the second round were allowed to

propagate for ~10 divisions to yield clones of roughly 1,000 cells.

Cells from single sub-clones were then dissociated and sorted into

a 384-well plate by flow cytometry to obtain a single cell per well,

and 27 single cells were subjected to the single-cell RT–qPCR

assay. The bulk RNA samples were used to calibrate the primers

of isoforms that were used in the single-cell microfluidic multiplex

RT–qPCR analysis.

Single-cell isolation by flow cytometry

Cells from the second round of sub-cloning were trypsinized,

washed in phosphate-buffered saline (PBS), and resuspended in

PBS. Cells were sorted by a SORP FACSAria II cell sorter, which was

calibrated with a sample of “pooled” cells to ensure that the depos-

ited cells had the same forward- and side-scatter settings. From each

cell line, 59 cells were sorted directly into 384-well plates, where

each well contained 5 ll of CellsDirect Reaction Mix (Invitrogen)

and 0.05 units of SUPERase In RNase inhibitor. The plates were then

centrifuged and stored at �80°C until they were used to generate

cDNA libraries.

Generation of cDNA libraries from single cells

cDNAs from each of the sorted single cells were prepared accord-

ing to the manufacturer’s protocol (Fluidigm). Briefly, first-strand

cDNA was synthesized using STA primer pool mix (Table EV11),

followed by 18 cycles of sequence-specific pre-amplification and

exonuclease I treatment. Samples were then diluted five-fold and

mixed with SsoFast EvaGreen Supermix with low ROX (Bio-Rad

Laboratories) and DNA Binding Dye Sample Loading Reagent

(Fluidigm) before being loaded into the 96.96 Dynamic Array IFC

(Fluidigm).

Verification of the amount and quality of single-cell cDNA

To verify that all of the abovementioned pre-amplified cDNAs were

originated from single cells and that their amounts were similar, we

examined the expression levels of three housekeeping genes (HKGs):

GAPDH, RPS13, and RPL29 by RT–qPCR performed on the pre-ampli-

fied cDNAs from each of the 59 single-cell samples. Only single-cell

samples that expressed similar levels of the HKGs were chosen for the

microfluidic multiplex RT–qPCR assay. To this end, for each HKG, we

computed the median expression level across all single-cell samples

and then the deviation of expression of each HKG in each single-cell

sample from its respective median expression. Finally, we ranked all

single-cell samples according to the maximal distance of HKGs from

their median expression in ascending order and selected the top 27,

from each of the three cell types for the RT–qPCR assay.

Primer design and calibration

Using the NCBI primer blast, we designed primers that specifically

differentiate between the included and skipped isoforms, with

respect to each of the selected cassette exons. For each cassette

exon, we designed three primers: one reverse primer, which was

used to amplify both isoforms and to convert RNA to cDNA, and

two forward primers, each used to specifically amplify one of the

two isoforms (Table EV11). The reverse primers were designed to

localize the constitutive exon downstream of the cassette exons.

The forward primer amplifying the included isoform was designed

to localize to the junction of the cassette exon and its downstream

constitutive exon. If a primer could not be designed according to

these requirements, a corresponding primer was designed so that it

localized only to the cassette exon, thus still allowing specific recog-

nition of the included isoform. The forward primer amplifying the

skipped isoform was designed to localize to the junction of the

upstream and the downstream constitutive exons. To prepare ×10

pooled primer mix, each primer pair (50 lM) was diluted to a

concentration to 500 nM, by combining 2 ll from each primer pair

with 18 ll of DNA suspension buffer.
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Primer calibration was performed by RT–qPCR. For each cDNA

sample, we used five different five-fold serial dilutions (25, 5, 1,

0.2, and 0.04 ng cDNA per reaction). Each reaction was checked

for quality (by visual inspection of the multicomponent curve),

primer specification (by visual inspection of the peak of the disso-

ciation curve), standard curve slope of cDNA dilutions, and the

overall efficiency of amplification (computed using the Viia7 soft-

ware). Only primers that exhibited specificity for their correspond-

ing isoforms with an efficiency of 100 � 20% were selected for

the single-cell RT–qPCR assay. Finally, we tested that our primer

efficiencies are not significantly biased toward one of the FIR

conservation groups. To this end, we used a linear mixed effects

model where the response was defined as the primer efficiency,

FIR conservation group, cell type, and isoform (included or

skipped) were defined as fixed effects, and the cassette exon

was defined as a random effect. According to this model, FIR

conservation group did not have a significant effect on the primer

efficiency (P = 0.46; LRT, Appendix Fig S2D), thus ruling out a

technical bias due to different primer efficiencies between the two

FIR groups.

Single-cell RT–qPCR assay

The 96.96 Dynamic Array IFC was loaded with cDNAs from each of

the 27 selected single cells for each of the three cell types, as well as

with three no-template controls (NTCs). We loaded 88 primer pairs

corresponding to the 44 pairs of included and skipped isoforms as

well as primer pairs for the three HKGs (used as positive controls)

and no-primer controls (NPCs), both loaded in duplicate. The 96.96

Dynamic Arrays IFC was then loaded on a BioMark System and run

for 30 PCR cycles (Cmax = 30), according to the manufacturer’s

recommendations.

Control RT–qPCR assay

cDNA samples were synthesized from the bulk RNA samples, from

each of the three cell lines. Each bulk RNA sample was then

diluted to ~1 ng per reaction, followed by 6 more 3.3-fold serial

dilutions (the lower concentration was ~0.001 ng per reaction).

These diluted RNA samples were then used to prepare cDNA

samples following the same protocol we used to prepare the

single-cell cDNA samples (using SuperScript� III One-Step RT-PCR

System with Platinum� Taq DNA Polymerase by Invitrogen). To

choose pre-amplified cDNAs that have expression levels similar to

the cDNAs that were used in the single-cell experiment, we exam-

ined the expression levels of three housekeeping genes (HKGs):

GAPDH, RPS13, and RPL29 as well as one alternative isoform

(ANKRD17 skipped isoform) by RT–qPCR performed on the pre-

amplified cDNAs from each dilution. For the control microfluidic

multiplex RT–qPCR experiment, we chose the cDNA dilution that

the resulted expression levels of these four control genes were the

closest but lower than the mean expression level exhibited by the

single cells as obtained by RT–qPCR analysis. We subsequently

divided these diluted cDNA samples from each cell line to 27

equal samples (replicates) and loaded them into the 96.96

Dynamic Array IFC. In addition, the 96.96 Dynamic Array IFC was

loaded with three no-template controls (NTCs): 88 primer pairs

corresponding to the 44 pairs of included and skipped isoforms,

primer pairs for the three HKGs loaded in duplicate, and no-primer

control (NPC), also loaded in duplicate. The 96.96 Dynamic Arrays

IFC was then loaded on a BioMark System and run for 30 PCR

cycles (Cmax = 30), according to the manufacturer’s recommenda-

tions.

Single-cell RT–qPCR data analysis

Filtering of samples with unsuccessful reactions

Any Ct call that was marked as “failed” by the Fluidigm Real-Time

PCR Analysis Software was eliminated. For this, we used the follow-

ing criteria: Ct quality > 0.65; peak ratio (Tm peak detected within

the Tm detection range/total detection) > 0.8.

Filtering of samples with cDNA amplification failure

To account for the possibility of cDNA amplification failure, we

followed the procedure described in Livak et al (2013) and defined

Ix;r ¼ 1 if Ct\Cmax
0 else

�
;

which indicates whether expression was observed in a well

containing a primer set x and a single-cell cDNA sample r. We

defined the probability of expression for each targeted isoform as

Ix ¼
P

r2R Ix;r=R, where R denotes the number of single-cell cDNA

samples. Next, we computed a failure-of-expression penalty for

each well as

sx;r ¼ Ix if Ct ¼ Cmax
0 else

�
:

Finally, we computed the failure-of-expression score for each

single-cell cDNA sample r as Sr ¼
P

x2X sx;r. We subsequently

removed two single-cell cDNA samples for which outlying Sr
values were clearly observed (Appendix Fig S7).

Filtering samples with expression below the limit of detection

To eliminate samples that represent noise, we computed the limit

of detection (LOD). According to the manufacturer’s guidelines,

Et values equal to or lower than 8 (where Et = Cmax–Ct) may not reli-

ably represent true expression. For a given isoform whose typical Et
value is higher than 8, noisy samples would be expected to appear as

outliers of the distribution of the reliable samples. To detect such

outliers for each isoform, we determined the LOD by iteratively

increasing it, starting from the lowest observed Et up to Et = 8, and

filtering any sample identified as a statistically significant outlier by

Grubbs’ test for outliers (Grubbs, 1969), which is designed to detect

outliers in a bell-shaped distribution, the typical shape of the Et distri-

bution across the single-cell RT–qPCR samples (Appendix Fig S8).

Calculation of cassette exon inclusion levels and expression
levels of included and skipped isoforms for the RT–qPCR data

We used 2Et � 1 as a proxy for expression level. Since all our

primer pairs were calibrated for more than 90% efficiency, we

assume that 2Et � 1 reliably approximates true expression levels.

We estimated the inclusion level of a cassette exon (p) as

p̂ ¼ 2EtI �1

2Et
I
þ2Et

S
�2
, where 2EtI � 1 and 2EtS � 1 denote the expression levels

of the included and the skipped isoforms, respectively. Accord-

ingly, 2EtI þ 2EtS � 2 was the expression level used in the analysis of

these data. p̂ is therefore the maximum-likelihood estimate of the

inclusion probability (or inclusion level) p, which is the success
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probability parameter of a binomially distributed random variable

for which 2EtI � 1 successes were observed out of 2EtI þ 2EtS � 2

trials.

Filtering cassette exons with no evidence of alternative splicing

Any cassette exon that was either only included or only skipped in

all its samples which passed the previous filtering steps, in a given

cell type, was additionally filtered since this reflects the lack of

evidence of alternative splicing in the respective cell type.

Variance-stabilizing transformation of inclusion levels

To eliminate the dependence of variance of estimated inclusion

levels on the estimated inclusion levels (p̂), we applied the arcsinffiffiffî
p

p� �
variance-stabilizing transformation (Sokal & Rohlf, 1995) to

all values of p̂. We used the sample mean and sample variance as

estimates of the across-sample mean and variance of both p̂ and

arcsin
ffiffiffî
p

p� �
.

Human embryonic stem cell single-cell RNA-seq data

We downloaded all eight samples of the 0 passages (P0) and 26

samples of the 10 passages (P10) from the raw RNA-seq data of

single-cell hESCs populations, generated by Yan et al (2013) (Gene

Expression Omnibus accession: GSE36552). Data were subjected to

quality filtering using the FastQC software (http://www.bioinfor-

matics.babraham.ac.uk/projects/fastqc).

Calculation of cassette exon inclusion and expression levels of
included and skipped isoforms for the hESC RNA-seq data

We aligned all hESC single-cell read data to the hg19 human

genome assembly along with the RefSeq splice junction annotation

(Pruitt et al, 2007) using the STAR RNA aligner (Dobin et al, 2013)

with default parameters. We quantified gene expression levels (re-

ported in fragment per kilobase per million sequenced reads units,

FPKM) using Cufflinks (Trapnell et al, 2010), with default parame-

ters (Table EV9), and used them as proxy for the sum of expression

levels of the included and skipped isoforms.

To estimate the inclusion levels of all cassette exons expressed

in the hESC data (Table EV9), we used MISO (Katz et al, 2010)

(with default parameters), which applies a Bayesian model for this

task. As a result, for each cassette exon in each single-cell RNA-

seq sample, MISO computes samples from the posterior distribu-

tion of the inclusion level (i.e. p̂s, which denotes sample s of

S samples from the posterior distribution of the inclusion level p).

The variance of this posterior distribution represents uncertainty

in the estimated inclusion level (i.e. measurement error), which

stems from the mapping ambiguity of the short-read RNA-seq

data.

Estimating the variance of inclusion levels for the hESC RNA-seq data

Similar to the analysis of the single-cell RT–qPCR data, we applied

the arcsin
ffiffiffî
p

p� �
transformation to every sample p̂s of S samples

from the posterior distribution of p. To obtain estimates of the vari-

ance of arcsin
ffiffiffî
p

p� �
of a specific cassette exon across R single-cell

RNA-seq samples, from each r 2 R RNA-seq sample we randomly

drew a sample from the posterior distribution of arcsin
ffiffiffî
p

p� �
and

subsequently computed the sample variance over these posterior

samples. That is,

s2
arcsin

ffiffî
p

p� �s ¼ 1

R�1

X
r2R

arcsin
ffiffiffiffiffiffi
p̂srr

p� �
� 1

R�1

X
r2R

arcsin
ffiffiffiffiffiffi
p̂srr

p� �" #
;

where sr denotes a specific sample draw s for single-cell RNA-seq

sample r, and therefore, ss2
arcsin

ffiffî
p

p� � approximates a sample s from

the posterior distribution of the variance of arcsin
ffiffiffî
p

p� �
across R

single-cell RNA-seq samples. We repeated this process many times

(where the draws are performed with replacement) in order to

obtain samples from the posterior distribution of the variance of

arcsin
ffiffiffî
p

p� �
across R single-cell RNA-seq samples.

Fitting a generalized linear mixed effects model to the variance of

cassette exon inclusion levels

For both the single-cell RT–qPCR data and the hESC RNA-seq data,

we fitted a generalized linear mixed effects model (GLMM) for esti-

mating the effects of FIR conservation, expression levels, and cell

type or cell population, on the variance of arcsin
ffiffiffi
p

p� �
. Specifically,

we used the generalized additive models for location, scale, and

shape (GAMLSS) (Rigby et al, 2005) implemented in the gamlss

R package.

For the single-cell RT–qPCR data, we defined the response as the

sample variance of arcsin
ffiffiffi
p

p� �
of a specific cassette exon across all

of its single-cell cDNA samples from a specific cell type

(i.e. s2
arcsin

ffiffî
p

p� �). In both RT–qPCR and hESC data, we discarded any

cassette exon for which less than three single-cell samples remained

subsequent to all filtering steps. The number of samples of each

cassette exon in the single-cell RT–qPCR and hESC analyses is

provided in Tables EV5 and EV9, respectively, and is presented as

histograms in Appendix Fig S9A and B, respectively. The mean

expression level across the corresponding single-cell cDNA samples

was defined as a continuous fixed effect, and the conservation group

(i.e. conserved or non-conserved) and the cell type (i.e. 293T,

MCF7, or U937) were defined as categorical fixed effects. Lastly, the

cassette exon was defined as a random effect. We fitted GAMLSS

using the gamma family distribution which applies a log link func-

tion to both the mean response and the variance of the errors. We

accounted for the different number of samples in the different FIR

conservation groups and cell types (which affects the sample vari-

ance, i.e. the response) by weighing the response by the correspond-

ing number of samples divided by the mean number of samples

across all responses. Model fit was assessed with diagnostic plots

(Appendix Figs S4 and S5), where outliers, defined as observations

which residuals from the regression fit were found to be significant

outliers according to the Grubbs’ test (Grubbs, 1969), were

removed. For each specified effect, to assess whether its inclusion

in the model is significantly justified, we performed a likelihood

ratio test (LRT) between a model that includes it and a nested

model that does not. In addition, the estimated coefficient of each

effect in the GAMLSS fit is computed a P-value, obtained from a

t-distribution with respective degrees of freedom in the model,

where the statistic is the estimated coefficient of the effect divided

by its standard error.

In order to assess whether the difference in the numbers of

samples between the two FIR conservation groups creates an artifi-

cially significant effect on the variance of inclusion levels, we

performed the following simulation study. We used the experimen-

tal design of the RT–qPCR data, that is, two groups of cassette

exons from three different treatments (cell types) with sample
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sizes identical to those in the post-filtering RT–qPCR data. For

each cassette exon, we drew an inclusion level (denoted as p)
uniformly between 0 and 1 along with a dispersion factor (denoted

as d) drawn uniformly between 0.01 and 0.05. Then, for each

cassette exon in each sample, we drew a dispersed inclusion level

uniformly from the [max (p�d, 0), min (p+d, 1)] interval, thus

reflecting random dispersion in inclusion levels across samples.

We then drew an expression level of the included isoform for each

cassette exon from a binomial distribution given its simulated

dispersed inclusion level and expression level from the real data

(i.e. the number of successes given the success probability and

number of trials). Following that, we estimated the inclusion level

in each sample (i.e. p̂) as the number of included isoforms divided

by the expression level, and transformed them (i.e. arcsin
ffiffiffî
p

p� �
).

Finally, we fitted the same GLMM to these simulated data and

computed the LRT P-value of the group effect. Out of 1,000 such

simulations, the fraction of simulations with a group-effect LRT

P < 0.05 was found to be 6%, thereby confirming that the signifi-

cant effect of FIR conservation group, observed in the real data, is

not an artifact of the different numbers of samples between the

two FIR conservation groups.

For the hESC RNA-seq data, the same model was fitted to the

response defined as a sample from the posterior distribution of

s2
arcsin

ffiffî
p

p� � (i.e. s2
arcsin

ffiffî
p

p� �s). The mean expression-level fixed effect

was defined as the mean FPKM of the gene harboring the cassette

exon across the single-cell RNA-seq samples (computed as

explained above), and FIR conservation was defined as a continuous

fixed effect. Cell population (i.e. P0 or P10) was defined as a cate-

gorical fixed effect similar to the cell-type fixed effect in the single-

cell RT–qPCR data, and the cassette exon was similarly defined as a

random effect. Again, each response was weighed by its correspond-

ing number of samples divided by the mean number of samples

across all responses. We fitted this model for each posterior sample

s2
arcsin

ffiffî
p

p� �s, thereby obtaining posterior samples of fitted models. In

contrast to the RT–qPCR data, in these data the cassette exons

with low FIR conservation have more samples than cassette exons

with high FIR conservation (Table EV9 and Appendix Fig S9).

Therefore, the significant effect of FIR conservation on the vari-

ance of inclusion levels is unlikely to arise due to these differences

in the numbers of samples. We note that limiting this analysis to

a minimum of ten single-cell samples per cassette exon (which

means using only the P10 population) essentially did not affect

our results.

In all figures and analyses for the hESC RNA-seq data, we used

the mean of posterior sample variance ðPs2S s
2
arcsin

ffiffî
p

p� �s=SÞ. The

95% credible intervals for these posterior samples for each esti-

mated effect coefficient, their standard error, and the corresponding

P-values as well as the P-values for the model selection tests are

provided in Table EV12.

Comparison of the control and single-cell RT–qPCR experiments

To compare the expression levels between the control and the

single-cell RT–qPCR experiments, we used a GLMM where we

defined the response as the natural log fold change between the

means of expression levels across the samples of the two experi-

ments. FIR conservation group and cell type were defined as fixed

effects, and cassette exon was defined as a random effect. To

compare the variance of inclusion levels between the control and

the single-cell RT–qPCR experiments, we used a GLMM where we

defined the response as the natural log fold change between the

variances of arcsin-transformed inclusion levels across samples of

the two experiments. FIR conservation group and cell type were

defined as fixed effects as well as the natural log fold change of the

mean expression levels between the two experiments. Cassette exon

was defined as a random effect.

In order to test whether the variance of inclusion levels in the

control experiment is within the range expected under the binomial

distribution, for each cassette exon we performed a chi-square test

assuming that the null inclusion level is the mean inclusion level

over all samples.

In order to estimate the effects of FIR conservation group, mean

expression levels, and cell type on the variance of inclusion levels in

the data of the control experiment, we fitted the same GLMM used

for the analysis of single-cell RT–qPCR data.

Data availability

The RT–qPCR primary data are available in Tables EV4 and EV5.

The hESC referenced data were generated by Yan et al (2013) and

were downloaded from the Gene Expression Omnibus under acces-

sion GSE36552.

Expanded View for this article is available online.
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