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Abstract

We announce the release of chromEvol version 2.0, a software tool for inferring the pattern of chromosome number
change along a phylogeny. The software facilitates the inference of the expected number of polyploidy and dysploidy
transitions along each branch of a phylogeny and estimates ancestral chromosome numbers at internal nodes. The new
version features a novel extension of the model accounting for general multiplication events, other than doubling of the
number of chromosomes. This allows the monoploid number (commonly referred to as x, or the base-number) of a group
of interest to be inferred in a statistical framework. In addition, we devise an inference scheme, which allows explicit
categorization of each terminal taxon as either diploid or polyploid. The new version also supports intraspecific variation
in chromosome number and allows hypothesis testing regarding the root chromosome number. The software, alongside a
detailed usage manual, is available at http://www.tau.ac.il/~itaymay/cp/chromEvol/.
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Chromosome number is a remarkably variable feature of eu-
karyotic genomes with variations in the somatic chromosome
number known to exist at all levels of taxonomic resolution.
The most recognizable chromosome number transition is
whole-genome duplication (WGD), or more generally poly-
ploidy, which due to the recent finding that many seemingly
diploid species have in fact undergone recurrent episodes of
genome duplication (Furlong and Holland 2004; Aury et al.
2006; Cui et al. 2006; Albertin and Marullo 2012), has arguably
been the focal point of interest of many evolutionary biolo-
gists and genome sequencing projects. Although perhaps less
appreciated, single chromosome number change is another
common mechanism by which the evolution of chromosome
numbers proceeds. These transitions include gain/loss of
entire chromosomes by a process known as aneuploidy and
processes such as chromosome fission or fusion (ascending or
descending dysploidy, respectively), which change the karyo-
type but not the genomic content of a lineage. Although
variation in chromosome numbers reaches its zenith in
plants, interest in polyploidy and dysploidy transitions have
been studied extensively in other groups, revealing an impor-
tant role for chromosome number change on micro and
macro evolutionary patterns in diverse groups such as fish
(Taylor et al. 2003; Zhan et al. 2014), yeast (Scannell et al.
2006), and butterflies (Kandul et al. 2007).

The remarkable variations of chromosome numbers has
drawn botanists, in particular, to evaluate the pattern of chro-
mosome number change, to estimate the base chromosome
number (commonly termed x), and to infer the frequency of
polyploids within a clade of interest. The term base number
has been used equivocally in the literature, either as the hy-
pothesized chromosome number at the root of a clade, or
alternatively, as the highest common factor of an observed
chromosome number distribution (reviewed in Cusimano

et al. 2012; Peruzzi 2013). Whatever the exact meaning of x
may be, it is usually taken to represent the monoploid
number of a group and is used to infer the ploidy level of a
lineage. Earlier studies employed various threshold techniques
to estimate the base number and thereby the occurrences
and locations of polyploidy events (Stebbins 1938; Grant
1963; Goldblatt 1980; Wood et al. 2009). For example, assum-
ing x = 7–9, Grant (1963) considered an angiosperm species
polyploid if it has a haploid number greater than n = 14,
whereas Goldblatt (1980) argued that this threshold should
be lower and set it as n = 11. Alternatively, Stebbins (1938)
designated a species as polyploid if its haploid number was a
multiple of the lowest count found in the genus, whereas
Wood et al. (2009) set this multiplication factor to be 1.75.
Clearly, such threshold methods suffer from a large degree of
extrapolation, do not account for the phylogenetic relation-
ships among the species, and mostly disregard the frequency
of chromosome number changes that are not due to poly-
ploidy. More recently, polyploidy was inferred within a
phylogenetic context following the maximum parsimony
principle (e.g., Schultheis 2001; Ohi-toma et al. 2006).
Accordingly, ancestral chromosome numbers are recon-
structed and the chromosome number inferred at the most
recent common ancestor (MRCA) of the group examined is
designated as the base number. A certain lineage is inferred to
be polyploid if its chromosome number is larger by a chosen
factor compared with the base number.

Notably, most of these analyses have failed to account for
the full information contained within the phylogeny of the
species studied or for dysploidy transitions. Furthermore,
these methods also implicitly assumed that the chromosome
numbers at extant taxa must include the chromosome
number that was present at the MRCA—an assumption
that is particularly problematic if rates of chromosome
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number change within the group are high. Recently, we have
formulated a series of likelihood models depicting the pattern
of chromosome number change along a phylogeny (Mayrose
et al. 2010). These models moved the analysis of chromosome
number change into a robust probabilistic inference frame-
work, thereby allowing explicit questions regarding the pat-
tern of chromosome number evolution to be formulated and
tested.

Here, we present chromEvol v. 2.0, a software tool for in-
ferring the pattern of chromosome number change along a
phylogeny. Using this method, it is possible to assess the fit of
several models of chromosome number change along a phy-
logeny, to infer the expected number of polyploidy and
dysploidy transitions along each branch, and to estimate an-
cestral chromosome numbers at internal nodes of the tree.
First, we describe a novel extension of the model that ac-
counts for general multiplication events, other than doubling
of the number of chromosomes. Using this extended model,
the monoploid number of a group of interest can be inferred
in a statistical framework. Second, we devise an inference
scheme to allow explicit categorization of each terminal
taxon to either diploid or polyploid relative to other taxa in
the group examined. In addition, this extended version of
chromEvol now supports intraspecific variations in chromo-
some numbers at tip taxa and permits users to fix the chro-
mosome number at the root, thereby explicitly allowing the
comparison between several alternative hypotheses regarding
the root ancestral state to be statistically compared.

The General ChromEvol Model

The evolutionary models implemented in chromEvol are
based on a continuous time Markov process. The most gen-
eral model originally considered in Mayrose et al. (2010)
includes six parameters and assumes that in an infinitesimal
time interval, four types of events are possible: ascending
dysploidy (with rate l), descending dysploidy (rate �), WGD
(i.e., exact duplication of the number of chromosomes, at rate
�), and demi-polyploidy (rate �). This last term was first
introduced in Mayrose et al. (2010) to account for possible
multiplications of the number of chromosomes by 1.5, lead-
ing to, for example, triplication events. For example, a hexa-
polyploid may be formed via a triploid bridge followed by a
genome duplication (Ramsey and Schemske 1998).
Additional two rate parameters allow the ascending and des-
cending dysploidy rates to depend on the current number of
chromosomes. All these factors are captured within the
instantaneous rate matrix Q, describing the rate of change
from a genome with i haploid chromosomes to a genome
with j chromosomes. For i 6¼ j, we define:

½Q�ij ¼

l+ ll � ði� 1Þ j ¼ i + 1 ðascending dysploidyÞ
�+ �l � ði� 1Þ j ¼ i� 1 ðdescending dysploidyÞ
� j ¼ 2i ðWGDÞ
� j ¼ 1:5i ðdemi-polyploidy Þ
0 otherwise

8>>>><
>>>>:

ð1Þ

The diagonal elements are determined by the constraint that
each row in Q sums to zero.

Although inclusion of the demi-polyploidy parameter in
the transition matrix allows for several alternative genome
multiplications to be formulated, it also results in several
shortcomings. First, demi-polyploidy transitions are well
defined only for even haploid numbers. Thus, for example,
a demi-polyploidy transition from n = 9 may lead (at equal
rates) to either n = 13 or n = 14. However, neither of these two
possibilities can truly represent a triplication event; assuming
a subsequent duplication event, a 9! 27 triplication would
then involve an additional chromosome number gain
(through the pathway 9! 13! 26! 27) or loss (through
the pathway 9! 14! 28! 27), thus artificially increasing
the rates of dysploidy. In addition, the model depicted in
equation (1) still fails to account for other possible additions
of the entire chromosome set to the genome. This is parti-
cularly true for clades exhibiting a noticeable polyploidy series
or for clades in which intercytotype mating is possible.
Consider, for example, the plant genus Chrysanthemum,
which exhibits high variation in chromosome numbers and
ploidy levels (n = 9, 18, 27, 36, 45) with x = 9 representing the
hypothesized base number (Liu et al. 2012). According to the
allowed transitions described in equation (1), a hypothesized
18! 45 transition could not be obtained solely by any com-
bination of demi- and polyploidy events and must artificially
entail some additional dysploidy events. However, such an
event can be reached via, for example, an n = 18 + n = 27
inter cytotype hybridization followed by a genome
duplication.

To overcome these difficulties, in the new chromEvol
implementation we developed a new parameterization of
the model that explicitly allows for any multiplication of
the monoploid chromosome number to be added to the
genome. This is done by including two additional parameters
to the model: �, the monoploid (base) number and �, its
respective transition rate. Under this scenario, the Q matrix
takes the following form:

½Q�ij ¼

l+ ll � ði� 1Þ j ¼ i + 1
�+ �l � ði� 1Þ j ¼ i� 1
� j ¼ 2i
� j ¼ 1:5i
� ðj� iÞ is divisible by �
0 otherwise

8>>>>>><
>>>>>>:

ð2Þ

In the most general case, �, �, and � are all included in the
model. Obviously, however, these parameters are somewhat
redundant (e.g., assuming �= 9, an 18! 27 transition can be
reached via either demi-polyploidy or by a monoploid addi-
tion), and the user may choose to examine any subset of these
parameters.

Using ChromEvol to Determine Polyploid Lineages

Although chromEvol can be used to infer the expected
number of ploidy transitions along each branch of the
tree, it does not classify extant taxa as diploid or
polyploid, which is the aim of many analyses. For example,
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in Mayrose et al. (2011), an extant taxon was categorized as a
polyploid if the estimated expected number of ploidy transi-
tions from the root to the tip exceeded a certain predefined
threshold (i.e., 0.9) and as diploid otherwise. However, by
arbitrarily setting a strict (or lenient) threshold for assigning
polyploidy, the number of polyploid taxa may be underesti-
mated (or overestimated). This misclassification may be par-
ticularly pronounced for groups with sparse chromosome
number data. Thus, to prevent misestimating polyploid diver-
sity, we developed a computational pipeline to infer which
taxa underwent a polyploidization event since divergence
from the MRCA of the group examined. By doing so, we
explicitly treat the root of the phylogeny as diploid. We
note that this methodology allows categorizing an extant
species as polyploid or diploid regardless of whether chromo-
some number data are available for that specific taxon.
Specifically, the pipeline accepts as input a file containing
the chromosome numbers in a FASTA format and a file
containing the phylogeny in a Newick format. The phylogeny
can be either a single tree or a set of trees (obtained using, e.g.,
MrBayes; Ronquist and Huelsenbeck 2003), thus accounting
for phylogenetic uncertainties. The output is the inferred
ploidy level of each species or “NA” (not available) in case
this could not be reliably inferred for a certain species. This
pipeline is supplied as an external perl package, available
through the program webpage. The procedure follows
these general steps:

1) Find the optimal chromosome number evolutionary
model for the given data set using a single tree (in our
analyses, we used the maximum a-posteriori probability
[MAP] tree). This model is used in all subsequent steps.
The main aim of this step is to reduce computation time,
so that not all available models are run in each step. The
optimal model is selected by means of the Akaike infor-
mation Criterion (AIC) (Akaike 1974).

2) In case multiple trees are available, randomly choose a
prespecified number of trees (e.g., 100) to be used in
subsequent steps.

3) The parameters of the model chosen in step 1 are opti-
mized independently for each tree sampled in step 2.

4) Simulate chromosome number evolution along the
input tree(s) using the corresponding model parameters
as inferred in step 3. By default, 100 simulations are
performed. The simulated chromosome numbers at
the tips are then used as data input to chromEvol;
thereby comparing “true” (simulated) and inferred
ploidy transitions. To make the inference step as realistic
as possible, simulated chromosome numbers at the tips
are retained only for those species with available chro-
mosome number in the original input data and are con-
verted to “unknown” for species with missing data. There
are two purposes for this simulation step. The first is to
detect two thresholds required for inferring ploidy levels:
A species is inferred as polyploid (diploid) if the expected
number of polyploidization events from the root to the
tip is above (below) the polyploid (diploid) threshold and
as NA if this expectation is in between these two

thresholds. The optimal thresholds are determined
using the Matthews Correlation Coefficient (Matthews
1975) that balances between true/false positives and
negatives. The second purpose for using simulations is
to detect taxa for which ploidy level could not be reliably
inferred according to the underlying model. These are
the taxa that suffer from high false-positive/-negative
rates (e.g., a taxon was inferred as diploid while it was
simulated as polyploid). A taxon is marked as unreliably
inferred if its ploidy level according to the optimized
threshold was erroneously inferred in more than 5% of
the simulations. Usually, these taxa reside in a subtree
with a large fraction of species with missing chromosome
counts, so that the inferences are based mainly on the
evolutionary model and less on the observed data. These
taxa are marked as NA.

5) In case multiple trees are given, infer ploidy levels across a
sample of trees. This step is based on the thresholds
found in step 4. Inferring from a sample of trees rather
than from a single tree increases the robustness of infer-
ence by accounting for phylogenetic uncertainties. For
each species, inferences obtained across the trees are
compared and those species which do not exhibit the
same inference across 95% or more of the topologies are
marked as NA.

6) Combine the reliability estimates from steps 4 and 5 and
summarize ploidy levels. When multiple trees are given,
summary statistics of the optimized model parameters
obtained across trees (median and 95% interval) further
allows users to evaluate the consistency of the optimiza-
tion search, thereby possibly locating multiple optima.

Additional Features
Determining the Root Frequencies
Likelihood calculations also require the assignment of root
frequencies. In the previous implementation, root frequencies
were determined according to their respective probabilities of
giving rise to the extant data, given the model parameters. In
the current version, we also allow these frequencies to be set
by the user, as well as fixing the root state to a certain number.
This allows users to directly compare several alternative
hypotheses regarding the ancestral state (often referred to
as the base chromosome number or “x”) via a statistical
model selection criterion. Note that the root state may or
may not be equal to the monoploid number, � (eq. 2). Thus,
this chromEvol implementation specifically differentiates
between these two alternative definitions of the base number.

Intraspecific Chromosome Number Variation
In the initial implementation of chromEvol, each terminal
taxon was assumed to possess a unique chromosome
number. However, many plant species exhibit more than
one chromosome number, and such intraspecific variation
(often termed cytotypes) may in fact be very common.
For example, 12–13% angiosperm and 17% fern
species were estimated to harbor multiple ploidy levels
(thus, ignoring other variations caused by dysploidy events;
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Wood et al. 2009). In the updated chromEvol version, such
intraspecific polymorphism was accommodated by allowing
several chromosome numbers, together with their respective
probabilities, to be set for each tip taxon. For example, a tip
taxon having the following counts: 10, 10, 10, 20 will be given
probabilities of 0.75 and 0.25 to have n = 10 and n = 20,
respectively. Accordingly, assuming an ancestral state of
n = 10, the expected number of WGDs leading to this taxon
will be 0.25, because this distribution can be explained by one
duplication occurring in 25% of the population. Note, that the
expected number of WGDs would be 0.5 if we assumed the
following distribution: 10,10,10,40 (two duplications leading
to n = 40). Thus, caution should be taken when using this
option, particularly when combining it with the ploidy infer-
ence pipeline described above, because higher ploidy counts
may cause a taxon to be inferred as polyploid even when the
majority of its sampled counts come from diploid plants. An
alternative, computationally intensive, strategy that is recom-
mended when high intraploidy variation is present would
accommodate intraspecific variation using a sampling strat-
egy whereby a single count for each taxon is iteratively
sampled (e.g., 100 times) based on its observed distribution.
ChromEvol should subsequently be executed on each sample,
and ploidy levels can be inferred based on the inferred ploidy-
levels distribution across the 100 chromEvol runs.

Program Implementation

The models and inference methods described here
were implemented in C ++ . The program and source
codes are available at www.tau.ac.il/~itaymay/cp/chromEvol
(last accessed April 13, 2014). The obligatory inputs to the
program are a tree file in a Newick format and a file contain-
ing chromosome numbers for extant taxa in a FASTA-like
format. Given a rooted phylogenetic tree and given the
assignment of chromosome numbers to extant species, the
likelihood of the data can be calculated as described pre-
viously (Mayrose et al. 2010). A regular application of
chromEvol entails obtaining the maximum likelihood (ML)
scores of several alternative models, each represented by a
different set of parameters. Model comparisons, for example,
using the AIC, can then be used to determine the model that
best fits a particular data set. For each model analyzed, model
parameters are estimated under the ML criterion, ancestral
states are inferred using both ML and Bayesian approaches,
and an estimation of the number of events for each transition

type along each branch of the phylogeny is given. The ances-
tral reconstruction and transition events may be viewed using
any tree visualization software.

Assessing Accuracy via Simulations

Simulations were used to investigate the accuracy by which
chromEvol infers the values of� (the base number) and � (the
corresponding transition rate). To restrict the parameter
space examined, simulations were performed based on four
sets of trees and parameter values as obtained from empirical
data sets (table 1; see below). These data sets were chosen as
they represent a range of evolutionary scenarios involving
base-number transition, and in all these data sets, the best-
fitted model included the � and � parameters. The Sorghum
data set represented the simplest scenario in which only
transitions by base number were simulated. In Hordeum,
WGD events were also simulated, occurring at a rate that is
higher than that of base number transitions (�= 0.38,
�= 0.24). In Lippia, high rate of dysploidy transitions were
simulated, but WGD were not explicitly simulated, whereas
the Primula data set represented the most complex scenario
whereby all types of transitions were simulated. A total of 100
simulations were performed on each data set. Simulated data
for each data set were prepared by modeling the evolutionary
process given a phylogeny (i.e., the MAP tree) and a set of
model parameters following the procedure described in
Mayrose et al. (2010). Simulated chromosome numbers at
the tips of the tree were then used as input for chromEvol.

First, we examined the inferred values of � throughout the
simulated data sets (table 1). Highly accurate inferences were
obtained for the Hordeum and Sorghum simulated data sets
where the correct base number was inferred in nearly all
simulations. The inference of � was less accurate in the
Primula and Lippia data sets that included dysploidy transi-
tions; this was particularly pronounced in the Lippia data set
where very high dysploidy rates were simulated, resulting in
the correct inference of � in only 46% of the simulations. The
relative accuracy of inferring the � parameter throughout the
simulated data sets is presented in table 1. Our simulation
results demonstrated that a more accurate inference is
expected when only base-number transitions are present
(as in Lippia and Sorghum) compared with data sets that
additionally include WGD events that occur at a distinct
rate (as in Hordeum and Primula). These simulations further
demonstrated that the inference accuracy of the � parameter

Table 1. Summary of the Simulated Parameters and Inference Accuracy under Empirical Data Scenarios.

Data Set Number
of Taxa

Simulated
Model

Simulated Parameters Percent of Simulations
with Correct b Inferencea

m Mean Relative
Errora,b

k d q b m

Sorghum 23 M9 0 0 0 5 0.46 100 0.42

Primula 16 M10 0.32 0.05 0.16 9 0.11 60 0.49

Lippia 23 M9 0.78 3.75 0 12 0.37 46 0.35

Hordeum 35 M10 0 0 0.38 14 0.24 94 0.58

aFor each data set, the model used for inference was the same as the one used for simulation.

bMean relative error was calculated using the formula

P100
i¼1 j vi � vs j =vs

100
, where �s is the simulated value of �, and �i is the inferred value of � in the i-th simulation.
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is similar to those obtained for other model parameters
(i.e., �, l, and �; supplementary table S4, Supplementary
Material online).

Finally, these simulations allowed us to compare the fit of
different chromEvol models and to examine whether the
best-fitted model (as determined using the AIC) was the
one that was actually simulated. As presented in figure 1,
when M10 was simulated (and so a separate rate parameter
for WGD was included in addition to other base number
transitions that may occur at a different rate), a large fraction
of simulated data sets best-supported model M9 (in which
WGDs may occur only through base number transitions).
In several such cases, this could be explained by the overlap
between allowed base number transitions and WGDs, which
made inclusion of the � parameter unnecessary. In other
simulated data sets, dysploidy events were not followed by
WGD events and so all polyploidization events were due to
transitions by a common factor (representing the base
number). Similarly, in a small fraction of the simulated data
sets, M10 was best supported, whereas M9 was the one

simulated. In these cases, a large number of base-number
transitions practically resulted in exact duplication of the
number of chromosomes, justifying the inclusion of the
extra � parameter. In simulations where all base number
transitions corresponded only to WGDs, the simple M1
model was preferred over the more complex M9/M10
models that were simulated.

Applying ChromEvol to a Large Number of Plant
Groups

To examine the usability of the new models suggested herein,
we have used chromEvol to analyze 100 plant genera (sup-
plementary table S5, Supplementary Material online).
Phylogenies and chromosome numbers data for each of
these genera were acquired as described in supplementary
materials, Supplementary Material online; for each genus, a
single tree (the MAP tree from a Bayesian phylogenetic recon-
struction) was used as the input for chromEvol. All genera
analyzed included between 16 and 93 species, with chromo-
some numbers available for at least half of the species in the

Sorghum

Hordeum

22

15

1 1

36

25

M1 M2 M3 M4 M9 M10

Primula

18

5
2 1

68

6

M1 M2 M3 M4 M9 M10

Lippia

5
9

3
0

73

10

M1 M2 M3 M4 M9 M10

19

9 9

0

34

29

M1 M2 M3 M4 M9 M10

FIG. 1. Best-fitted model for simulated data sets. In this analysis, six models (as defined in table 2; models M5–M8 were omitted because these are the
most computationally intensive and are rarely chosen as the best-fitted model as determined from empirical data sets; supplementary fig. S1,
Supplementary Material online) were compared using the AIC.
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tree. For each genus, the ten evolutionary models summar-
ized in table 2 were fitted to the data, and the AIC was used to
determine the model that best fits a particular data set.
Results for this analysis are summarized in supplementary
figure S1 and table S5, Supplementary Material online. In
71% of the data sets, models allowing for polyploidy events
(WGD, demi-duplication or transition by base number) were
preferred over models that allow for dysploidy transitions
only, whereas very few data sets (2%) supported linear depen-
dency of dysploidy rates on the current number of chromo-
somes. Models M9 and M10, which allow for chromosome
number transitions by a base number, were chosen in 27% of
the data sets. This supports the need for the inclusion of such
models when analyzing complex patterns of chromosome
number evolution using chromEvol. Interestingly, M9 was
chosen approximately three times more often than M10,
implying that in many cases modeling transitions by a base
number alleviate the need to differently model WGD events.
Finally, in 21 out of the 27 data sets where M9 or M10 were
chosen, the best-supported model apart from these two
included demi-polyploidy transitions. This observation sug-
gests that modeling transitions by a base number mostly
constitutes an alternative to the somewhat controversial
demi-duplication event.

Illustrative Example: Primula Aleuritia Complex

Primula L. (Primulaceae) is a genus of flowering perennial
plants comprising approximately 500 species and has a
wide geographic distribution (Schmidt-Lebuhn et al. 2012).
Species of Primula are known for their range of floral morphs
(e.g., heterostyly) and for the frequent incidence of polyploidy
and hybridization (Davies 1953; Mast and Conti 2006; Li et al.
2011). The arctic alpine Aleuritia complex (Primula sect.
Aleuritia subsect Aleuritia) includes 21 described species,
with wide karyological variability (2n = 18, 22, 36, 54, 72)
with x = 9 being the hypothesized base number (Richards
2002). The high frequency of polyploidy in this group suppo-
sedly arose through secondary contact of differentiated
diploid populations that reunited following glacier retreat
(Guggisberg et al. 2009).

Here, we exemplify the use of chromEvol using a data set
comprising 16 species from sections Aleuritia and Armerina.
These two sections were shown to be placed in the same,
largely unresolved, clade (Guggisberg et al. 2009). First, given
the MAP tree (reconstructed using MrBayes [Ronquist and
Huelsenbeck 2003] as detailed in supplementary materials,
Supplementary Material online), the optimized likelihood
values were determined for each of ten chromosome
number evolutionary models (table 2). These models include
eight models described previously (Mayrose et al. 2010) and
two new models involving chromosome number transitions
by a base number. The best-supported model based on this
analysis was the one allowing for separate rate parameters
for both WGDs and base-number transitions (model M10;
table 2). This model inferred �= 9 as the most likely mono-
ploid number as was suggested before for this genus (Richards
2002). Subsequently, the ploidy levels of 16 extant taxa were
determined based on this model and based on the best-
supported model out of those not allowing for base
number transitions (model M2; table 2). Notably, the
number of transitions inferred under the two models was
markedly different (16 and 10 ploidy transitions inferred
using model M2 and M10 respectively; supplementary table
S3, Supplementary Material online). Similarly, these two
models resulted in different ancestral chromosome numbers
inferences (fig. 2). For example, using M10, the most probable
chromosome number at the root was 9 (posterior probability
of 0.9), followed by x = 8 (P = 0.07). However, using M2, a
flatter distribution of probable chromosome numbers were
obtained, with x = 2 being the most probable root state
(P = 0.26) and x = 9 receiving very low support (P = 0.02).
This discrepancy can be explained by the fact that under
M2, multiple polyploidization events are needed to accom-
modate a single base-number transition (e.g., from 9 to 36),
and thus high rates of chromosome number transitions were
inferred under this model. Consequently, the root state
inferred under M2 was much lower than that inferred
under M10, because multiple transitions were inferred to
occur along the two lineages descendent from the root
when analyzed using M2, whereas no transitions were inferred
using M10. Additionally, there were marked differences in the

Table 2. Summary of Chromosome Number Evolutionary Models, Their Respective AIC Scores, and Optimized Parameter Values as Inferred in the
Primula Analysis.

Model "AIC Parameters

k kl d dl q l m b

M1: CONST_RATE 31.674 46.3 — 50.2 — 0.80 — — —

M2: CONST_RATE_DEMI 9.465 0.39 — 0.04 — 0.60 — —

M3: CONST_RATE_DEMI_EST 10.259 0.37 — 0.10 — 0.63 0.18 — —

M4: CONST_RATE_NO_DUPL 33.686 78.7 — 79.7 — — — — —

M5: LINEAR_RATE 20.689 11.7 0.66 �0 3.06 2.02 — — —

M6: LINEAR_RATE_DEMI 20.224 10.0 0.09 �0 2.88 1.68 — —

M7: LINEAR_RATE_DEMI_EST 22.353 8.9 —0.04 �0 2.94 1.52 2.80 — —

M8: LINEAR_RATE_NO_DUPL 33.851 44.0 2.70 33.7 3.47 — — — —

M9: BASE_NUM 2.743 0.4 — 0.06 — — — 0.16 9

M10: BASE_NUM_DUPL 0 0.32 — 0.054 — 0.17 — 0.11 9
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inferred ploidy levels under the two models; using model
M10, the ploidy-level inference pipeline resulted in nine
diploid species and seven polyploid species (fig. 2), whereas
the inference under model M2 was deemed unreliable
(i.e., the inferred ploidy levels for all species was NA) suggest-
ing model inadequacy.

Conclusion
The chromEvol software implements a variety of models
depicting the evolution of chromosome numbers thereby
providing users with a statistical tool to elucidate the pattern
of chromosome number change along a phylogeny. In the
new version of the program presented here, the base number
of a group of interest can be inferred in a statistical frame-
work. The concept of the base number is regularly taken to
represent “the haploid number present in the initial popula-
tion of a monophyletic clade” (Guerra 2008). Because this
ancestral number is frequently, although not always, equal
to the monoploid number of the polyploid series observed
in the group, the two terms have been used somewhat inter-
mingly. In chromEvol, we explicitly separated these two
concepts. Although the ancestral root number can be com-
putationally inferred or be set by the user, the addition by any
multiplication of the monoploid number is now an integral
part of the model using the introduced � parameter (eq. 2).
Several complexities should be noted regarding this para-
meter. First, although a single monoploid number may
define a large clade, it is also possible that, due to dysploidy,
each subclade in an analyzed phylogeny will exhibit a unique
polyploid series with the respective unique monoploid
number (Guerra 2008). Here, we treated the monoploid

number as a single possible value. Allowing for several distinct
monoploid numbers can easily be integrated into our models
but will come at the expense of additional free parameters
that may be warrant only when large clades are considered.
Second, in the current implementation, we treated additions
by any multiplier of � as equally likely. Other scenarios
whereby, for example, single � additions are more likely
than higher multiplications can be integrated into the
model (but again, increasing model complexity). Finally,
although the � parameter was initially included in our
models as a means to infer the base number of the group
examined, we note that practically its optimized value is
not necessarily so, particularly when additional parameters
modeling other polyploidization events (i.e., � and �) are
considered. For example, in the Hordeum data set the best-
supported model was M10 with �= 14 and a high rate of
WGDs (table 1). Notably, most duplications involved transi-
tions from 7 to 14 via the � parameter. Although seven is an
obvious base number of this genus, the � parameter allowed
for several 7! 21 transitions, which otherwise must have
been explained by multiple transitions.

The chromEvol program allows users to estimate the
branches in which ploidy transitions most probably occurred.
However, these estimates cannot trivially be used to deter-
mine which lineages are polyploid and which are diploid.
To this end, we introduced a simulation-based approach to
determine the ploidy levels of extant taxa. This approach can
further be used to pinpoint the lineages in which ploidy
estimates are deemed unreliable based on the current chro-
mosome number distribution. Importantly, in the current
implementation, chromEvol ignores possible association

FIG. 2. ChromEvol inferences for Primula Aleuritia complex. Ploidy levels inferences for tip taxa based on model M10 are marked as blue (diploids) and
red (polyploids). The ML ancestral chromosome numbers estimated using model M10 are given next to the internal nodes. The inset compares the
inferred chromosome number distribution at the root using models M2 (orange) and M10 (purple).
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between transitions in chromosome numbers and transitions
in ploidy levels. For example, it is possible that due to diploi-
dization processes (Wolfe 2001), the rate of descending dys-
ploidy will be higher in a polyploid compared with a diploid
background. Furthermore, polyploidy is known to have a
profound impact on rates of diversification (Fawcett et al.
2009; Soltis et al. 2009; Mayrose et al. 2011), which could
confound estimation of chromosome number transition
rates and ancestral state reconstruction (Maddison 2006;
Goldberg and Igic 2008). One may envision a covarion-like
process (Galtier 2001), in which the evolution of chromosome
numbers and ploidy levels is jointly modeled. Accordingly,
rather than assuming a constant pattern of chromosome
number change across the phylogeny, different lineages
may evolve under different evolutionary patterns, dictated
by their ploidy levels. Such a combined model could also
be integrated within a Bayesian framework (i.e., by using a
Markov chain Monte-Carlo sampling strategy; Hastings 1970),
thereby accounting for uncertainty in parameter estimation
and phylogeny reconstruction. Using this formulation,
chromEvol may further be extended to allow chromosome
number or ploidy levels to influence rates of speciation and
extinction under the Binary State Speciation and Extinction
(BiSSE) framework (Maddison et al. 2007). Such possible
extensions will come at the expense of additional free para-
meters and modeling complexities that may only be justified
when large trees are considered. However, such large trees
may be particularly unrealistic for the time-homogeneity
assumption (i.e., a single transition matrix across the whole
phylogeny). Certainly, exploring the association between pat-
terns of chromosome number change and ploidy levels as
well as the range of complexities that can be explored using
the chromEvol model are important future directions.

Supplementary Material
Supplementary materials, tables S1–S5, and figure S1 are avail-
able at Molecular Biology and Evolution online (http://www.
mbe.oxfordjournals.org/).
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