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Abstract

Let H be a binary-labelled concept class. We prove that H can be PAC-learned by an
(approximate) differentially-private algorithm if and only if it has a finite Littlestone dimension.
This implies a qualitative equivalence between online learnability and private PAC learnability.

1 Introduction

This work studies the relationship between private PAC learning and online learning.

Differentially-Private Learning. Statistical analyses and computer algorithms play significant
roles in the decisions which shape modern society. The collection and analysis of individuals’ data
drives computer programs which determine many critical outcomes, including the allocation of
community resources, decisions to give loans, and school admissions.

While data-driven and automated approaches have obvious benefits in terms of efficiency, they
also raise the possibility of unintended negative impacts, especially against marginalized groups.
This possibility highlights the need for responsible algorithms that obey relevant ethical require-
ments (see e.g. [O’N16]).

Differential Privacy (DP) [DMNS06] plays a key role in this context. Its initial (and primary)
purpose was to provide a formal framework for ensuring individuals’ privacy in the statistical
analysis of large datasets. But it has also found use in addressing other ethical issues such as
algorithmic fairness (see, e.g. [DHP+12, CGKM19]).
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There is now an extensive literature identifying differentially private algorithms and their lim-
itations in a variety of contexts, including statistical query release, synthetic data generation,
classification, clustering, graph analysis, hypothesis testing, and more. In general, the goal is
to understand when and how privacy can be achieved in these tasks with a modest overhead in
resources, such as data samples, computation time, or communication. Nevertheless, many ba-
sic questions remain regarding which tasks are compatible with differential privacy whatsoever,
especially in settings where the data are complex, high-dimensional, or infinite.

We study these questions in the private PAC model [Val84, KLN+11], which captures binary
classification tasks under differential privacy. This is the simplest and most extensively studied
model of how sensitive data is analyzed in machine learning. In their work introducing this model,
Kasiviswanathan et al. [KLN+11] showed that every finite class H is privately learnable using
O(log |H|) samples. However, this bound is loose for many specific concept classes of interest
and says nothing when H is infinite. A number of papers gave improved bounds for specific
classes [BBKN14, BNSV15, FX15, BNS16a, BDRS18, BNS19, BMNS19, KLM+20, KMST20, SS21],
but a general characterization of learnability in terms of the combinatorial structure of H remains
elusive. This situation stands in stark contrast to the non-private case, where early results showed
that the sample complexity of PAC learning is characterized, up to constant factors, by the VC
dimension [VC74, BEHW89].

In this manuscript we make progress towards characterizing PAC-learnability by algorithms
satisfying approximate differential privacy. We prove a qualitative characterization: We show that
a hypothesis class H is differentially-privately learnable (with some finite number of samples) if and
only if it is online learnable (with some finite mistake bound).

Online Learning. Online learning is a well-studied branch of machine learning which addresses
algorithms making real-time predictions on sequentially arriving data. Such tasks arise in contexts
including recommendation systems and advertisement placement. The literature on this subject is
vast and includes several books, e.g. [CL06, SS12, Haz16].

Online Prediction, or Prediction with Expert Advice is a basic setting within online learning.
Let H = {h : X → {±1}} be a class of predictors (also called experts) over a domain X. Consider
an algorithm which observes examples (x1, y1) . . . (xT , yT ) ∈ X × {±1} in a sequential manner.
More specifically, in each time step t, the algorithm first observes the instance xt, then predicts a
label ŷt ∈ {±1}, and finally learns whether its prediction was correct. The goal is to minimize the
regret, namely the number of mistakes compared to the best expert in H:

T∑
t=1

1[yt 6= ŷt]− min
h∗∈H

T∑
t=1

1[yt 6= h∗(xt)].

In this context, a class H is said to be online learnable if for every T , there is an algorithm that
achieves sublinear regret o(T ) against any sequence of T examples. The Littlestone dimension is a
combinatorial parameter associated to the class H which characterizes its online learnability [Lit87,
BPS09]: H is online learnable if and only if it has a finite Littlestone dimension d <∞. Moreover,
the best possible regret R(T ) for online learning of H satisfies

Ω(
√
dT ) ≤ R(T ) ≤ O(

√
dT log T ).

2



Furthermore, if it is known that if one of the experts never errs (a.k.a the realizable setting), then
the optimal regret is exactly d.1 (The regret is referred to by mistake-bound in this context.)

Stability. While at a first glance it may seem that online learning and differentially-private
learning have little to do with one another, a recent line of work has revealed a tight connection
between the two [AS17, ALMT17, BLM19, NRW19, JMNR19, GHM19].

At a high-level, this connection appears to boil down to the notion of stability, which plays a key
role in both topics. On one hand, the definition of differential privacy is itself a form of stability;
it requires robustness of the output distribution of an algorithm when its input undergoes small
changes. On the other hand, stability also arises as a central motif in online learning paradigms
such as Follow the Perturbed Leader [KV02, KV05] and Follow the Regularized Leader [AHR08,
SSS07, Haz16].

In their monograph [DR14a], Dwork and Roth identified stability as a common factor of learning
and differential privacy: “Differential privacy is enabled by stability and ensures stability. . . we
observe a tantalizing moral equivalence between learnability, differential privacy, and stability.”
This insight has found formal manifestations in several works. For example, Abernethy et al. used
DP inspired stability methodology to derive a unified framework for proving state of the art bounds
in online learning [ALMT17]. In the opposite direction, Agarwal and Singh showed that certain
standard stabilization techniques in online learning imply differential privacy [AS17].

Stability plays a key role in this work as well. The direction that any class with a finite
Littlestone dimension can be privately learned hinges on the following form of stability: for η > 0
and n ∈ N, a learning algorithm A is (n, η)-globally stable2 with respect to a distribution D over
examples if there exists an hypothesis h whose frequency as an output is at least η. Namely,

Pr
S∼Dn

[A(S) = h] ≥ η.

Our argument follows by showing that every H can be learned by a globally-stable algorithm with
parameters η = 2−2

O(d)
, n = 2O(d), where d is the Littlestone dimension of H. As a corollary,

we get an equivalence between global stability and differential privacy (which can be viewed as a
form of local stability). That is, the existence of a globally-stable learner for H is equivalent to
the existence of a differentially-private learner for it (and both are equivalent to having a finite
Littlestone dimension).

Littlestone Dimension and Thresholds. The converse direction – that every DP-learnable
class has a finite Littlestone dimension – utilizes an intimate relationship between thresholds and
the Littlestone dimension: a class H has a finite Littlestone dimension if and only if it does not
embed thresholds as a subclass (for a formal statement, see Theorem 10); this follows from a seminal
result in model theory by Shelah [She78]. As explained in the preliminaries (Section 3), Shelah’s

1More precisely, there is a deterministic algorithm that makes no more than d mistakes, and for every deterministic
algorithm there is a (realizable) input sequence on which it makes at least d mistakes. For randomized algorithms a
slightly weaker lower bound of d/2 holds with respect to the expected number of mistakes.

2The word global highlights a difference with other forms of algorithmic stability. Indeed, previous forms of stability
such as DP and uniform hypothesis stability [BE02] are local in the sense that they require output robustness subject
to local changes in the input. However, the property required by global stability captures stability with respect to
resampling the entire input.

3



theorem is usually stated in terms of orders and ranks. Chase and Freitag [CF18] noticed3 that
the Littlestone dimension is the same as the model theoretic rank. Meanwhile, order translates
naturally to thresholds. To make Theorem 10 more accessible for readers with less background in
model theory, we provide a combinatorial proof in the appendix.

Littlestone Classes. It is natural to ask which classes have finite Littlestone dimension. First,
note that every finite class H has Littlestone dimension d ≤ log|H|. There are also many natural
and interesting infinite classes with finite Littlestone dimension. For example, let X = Fn be an
n-dimensional vector space over a field F and let H ⊆ {±1}X consist of all (indicators of) affine
subspaces of dimension ≤ d. The Littlestone dimension of H is d. More generally, any class
of hypotheses that can be described by polynomial equalities of bounded degree has a bounded
Littlestone dimension.4 This can be generalized even further to classes that are definable in stable
theories. This (different, still) notion of stability is deep and well-explored in model theory. We
refer the reader to [CF19], Section 5.1 for more examples of stable theories and the Littlestone
classes they correspond to.

Organization. The rest of this manuscript is organized as follows. In Section 2 we formally state
our main results and discuss some implications and other related and subsequent work. Then, in
Section 4 we prove the direction that differentially private learnable classes have a finite Littlestone
dimension, and in Section 5 we prove the converse direction, that every Littlestone class is differ-
entially private PAC learnable. Finally, Section 6 concludes the paper with some suggestions for
future work.

2 Results

We next present our main results that yield an equivalence between private PAC learning and online
learning. We note that the derived equivalence is qualitative in the sense that the gap between the
best known lower and upper bounds for learning a class H is incredibly large: the lower bound
is proportional to log∗(d), whereas the upper bound is doubly exponential in d, where d is the
Littlestone dimension of H. Our upper bound has recently been reduced to Õ(d6) in subsequent
work [GGKM20].

The rest of this section is organized as follows: Sections 2.1, 2.2, and 2.3 are dedicated to
the relationship between differentially-private learning, Littlestone dimension, and online learning,
and in Section 2.4 we discuss an implication for private boosting. Throughout this section some
standard technical terms are used. For definitions of these terms we refer the reader to Section 3.

2.1 Private Learning Implies Finite Littlestone Dimension

We begin by the following statement that resolves an open problem in [FX15] and [BNSV15]:

3Interestingly, though the Littlestone dimension is a basic parameter in Machine Learning (ML), this result has
not appeared in the ML literature.

4Note that if one replaces “equalities” with “inequalities” then the Littlestone dimension may become unbounded
while the VC dimension remains bounded. This is demonstrated, e.g., by halfspaces which are captured by polynomial
inequalities of degree 1.
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Theorem 1 (Thresholds are not privately learnable). Let X ⊆ R and let A be a ( 1
16 ,

1
16)-accurate

learning algorithm for the class of thresholds over X with sample complexity n which satisfies (ε, δ)-
differential privacy with ε = 0.1 and δ = O( 1

n2 logn
). Then,

n ≥ Ω(log∗ |X|).

In particular, the class of thresholds over an infinite X can not be learned privately.

We note that an upper bound which scales with (log∗ |X|)
3
2 on the private sample complexity

of learning thresholds over a domain of size n is given by [KLM+19]. Thus, Theorem 1 is tight up
to polynomial factors. A weaker version of Theorem 1 by [BNSV15] provides a similar lower bound
but applies only to proper learning algorithms.

Theorem 1 and Theorem 10 (which is stated in Section 3) imply that any privately learnable
class has a finite Littlestone dimension:

Theorem 2 (Private learning implies finite Littlestone dimension). Let H be an hypothesis class
with Littlestone dimension d ∈ N ∪ {∞} and let A be a ( 1

16 ,
1
16)-accurate learning algorithm for H

with sample complexity n which satisfies (ε, δ)-differential private with ε = 0.1 and δ = O( 1
n2 logn

).
Then,

n ≥ Ω(log∗ d).

In particular any class that is privately learnable has a finite Littlestone dimension.

2.1.1 On the Proof of Theorem 1

A common approach of proving impossibility results in computer science (and in machine learning in
particular) exploits a Minmax principle, whereby one specifies a fixed hard distribution over inputs,
and establishes the desired impossibility result for any algorithm with respect to random inputs from
that distribution. As an example, consider the “No-Free-Lunch Theorem” which establishes that
the VC dimension lower bounds the sample complexity of PAC-learning a class H. Here, the hard
distribution is picked to be uniform on a shattered set of size d = VC(H), and the argument follows
by showing that every learning algorithm must observe Ω(d) examples. (See e.g. Theorem 5.1 in
[SSBD14].)

Such “Minmax” proofs establish a stronger assertion: they apply even to algorithms that “know”
the input-distribution. For example, the No-Free-Lunch Theorem applies even to learning algo-
rithms that are designed given the knowledge that the marginal distribution is uniform over some
shattered set.

Interestingly, such an approach is bound to fail in proving Theorem 1. The reason is that if
the marginal distribution DX is fixed, then one can pick an ε/2-cover5, which we denote by Cε/2,
for the class thresholds over X of size |Cε/2| = O(1/ε), and use the exponential mechanism [MT07]
to DP-learn the finite class Cε/2 with sample complexity that scales with log|Cε/2| = O(log(1/ε)).
Since Cε/2 is an ε-cover for the class of thresholds, the obtained algorithm PAC learns the class of
thresholds in a differentially private manner. To conclude, there is no single distribution which is
“hard” for all DP algorithms that learn thresholds.

To overcome this difficulty one must come up with a method of assigning to any given algorithm
A a “hard” distribution D = DA which is tailored to A and witnesses Theorem 1 with respect

5I.e. Cε/2 satisfies that for every threshold h there exists c ∈ Cε/2 such that Prx∼DX (c(x) 6= h(x)) ≤ ε/2.
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to A. The challenge is that A can be arbitrary; e.g. it may be improper.6 We refer the reader
to [NSY18, NY19, BMN+18] for a line of work which explores in detail a similar “failure” of the
Minmax principle in the context of PAC learning with low mutual information.

The “method” which we use to prove Theorem 1 exploits Ramsey theory. In a nutshell, Ramsey
theory provides tools which allow to detect, for any learning algorithm, a “largish”’ set X ′ ⊆ X such
that the behavior of A on input samples from X ′ is highly regular. Then, the uniform distribution
over X ′ is the “hard” distribution which is used to derive Theorem 1.

We note that similar applications of Ramsey theory in computer science date back to the
80’s [MSM85]. For more recent usages see e.g. [Bun16, CDFS19, CHK+19].

Finally, we note that in the proper case, [BNSV15] demonstrated an ensemble, namely a distri-
bution over distributions, which is hard for every differentially private algorithm A: if one draws
a random distribution D from the ensemble and runs A on an input-sample from D, then the ex-
pected error of A will be large. It is plausible that such a statement also holds for general (possibly
improper) algorithm, and it would be interesting to find such a natural ensemble.

2.2 Finite Littlestone Dimension Implies Private Learning

The following statement provides an upper bound on the sample complexity of DP-learning H,
which depends only on the Littlestone dimension of H and the privacy/utility parameters. In
particular, it does not depend on |H|.

Theorem 3 (Littlestone Classes are Privately Learnable). Let H ⊆ {±1}X be a class with Lit-
tlestone dimension d, let ε, δ ∈ (0, 1) be privacy parameters, and let α, β ∈ (0, 1/2) be accuracy
parameters. For

n = O

(
2Õ(2d) + log 1/βδ

αε

)
= Od

(
log(1/βδ)

αε

)
there exists an (ε, δ)-DP learning algorithm such that for every realizable distribution D, given an
input sample S ∼ Dn, the output hypothesis f = A(S) satisfies lossD(f) ≤ α with probability at
least 1− β, where the probability is taken over S ∼ Dn as well as the internal randomness of A.

A similar result holds in the agnostic setting:

Corollary 4 (Agnostic Learner for Littlestone Classes). Let H ⊆ {±1}X be a class with Littlestone
dimension d, let ε, and δ ∈ (0, 1) be privacy parameters, and let α, β ∈ (0, 1/2) be accuracy
parameters. For

n = O

(
2Õ(2d) + log(1/βδ)

αε
+

VC(H) + log(1/β)

α2ε

)
there exists an (ε, δ)-DP learning algorithm such that for every distribution D, given an input
sample S ∼ Dn, the output hypothesis f = A(S) satisfies

lossD(f) ≤ min
h∈H

lossD(h) + α

with probability at least 1 − β, where the probability is taken over S ∼ Dn as well as the internal
randomness of A.

6I.e. it may output hypotheses which are not thresholds.
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Corollary 4 follows from Theorem 3 by Theorem 2.3 in [ABMS20] which provides a general
mechanism to transform a learner in the realizable setting to a learner in the agnostic setting7.
We note that formally the transformation in [ABMS20] is stated for a constant ε = O(1). Taking
ε = O(1) is without loss of generality as a standard “secrecy-of-the-sample” argument can be used
to convert this learner into one which is (ε, δ)-differentially private by increasing the sample size by
a factor of roughly 1/ε and running the algorithm on a random subsample. See [KLN+11, Vad17]
for further details.

2.3 Online Learning Versus Differentially Private PAC Learning

Since Littlestone dimension characterizes online learnability [Lit87, BPS09], Theorem 2 and Theo-
rem 3 imply an equivalence between differentially private PAC learning and online learning:

Theorem 5 (Private PAC Learning ≡ Online Prediction.). The following statements are equivalent
for a class H ⊆ {±1}X :

1. H is online learnable.

2. H is approximate differentially-privately PAC learnable.

Theorem 5 directly follows from Theorem 2 (which gives 2 → 1) and Theorem 3 (which gives
1 → 2). We comment that a quantitative relation between the learning rates and mistake/regret
bounds is also implied: for example, in the agnostic setting it is known that the optimal regret
bound for H is Θ̃d(

√
T ), where the Θ̃d conceals a constant which depends on the Littlestone

dimension of H [BPS09]. Similarly, we get that the optimal sample complexity of agnostically

privately learning H is Θd(
log(1/(βδ))

α2ε
).

We remark however that the above equivalence is mostly interesting from a theoretical perspec-
tive, and should not be regarded as an efficient transformation between online and private learning.
Indeed, the Littlestone dimension dependencies concealed by the Θ̃d(·) in the above bounds on
the regret and sample complexities may be very different from one another. For example, there
are classes for which the Θd(

log(1/(βδ))
αε ) bound hides a poly(log∗(d)) dependence, and the Θ̃d(

√
T )

bound hides a Θ(d) dependence. One example which attains both of these dependencies is the class
of thresholds over a linearly ordered domain of size 2d [KLM+19].

2.3.1 Global Stability

Our proof of Theorem 3 hinges on an intermediate property which we call global stability:

Definition 6 (Global Stability). Let n ∈ N be a sample size and η > 0 be a global stability
parameter. An algorithm A is (n, η)-globally-stable with respect to a distribution D if there exists
an hypothesis h such that

Pr
S∼Dn

[A(S) = h] ≥ η.

While global stability is a rather strong property, it holds automatically for learning algorithms
using a finite hypothesis class. By an averaging argument, every learner using n samples which

7Theorem 2.3 in [ABMS20] is based on a previous realizable-to-agnostic transformation from [BNS15] which
applies to proper learners. Here we require the more general transformation from [ABMS20] as the learner implied
by Theorem 3 may be improper.
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produces a hypothesis in a finite hypothesis class H is (n, 1/|H|)-globally-stable. The following
proposition generalizes “Occam’s Razor” for finite hypothesis classes to show that global stability
is enough to imply similar generalization bounds in the realizable setting.

Proposition 7 (Global Stability =⇒ Generalization). Let H ⊆ {±1}X be a class, and assume
that A is a consistent learner for H (i.e. lossS(A(S)) = 0 for every realizable sample S). Let D
be a realizable distribution such that A is (n, η)-globally-stable with respect to D, and let h be a
hypothesis such that PrS∼Dn [A(S) = h] ≥ η, as guaranteed by the definition of global stability.
Then,

lossD(h) ≤ ln(1/η)

n
.

Proof. Let α denote the loss of h, i.e. lossD(h) = α, and let E1 denote the event that h is consistent
with the input sample S. Thus, Pr[E1] = (1 − α)n. Let E2 denote the event that A(S) = h.
By assumption, Pr[E2] ≥ η. Now, since A is consistent we get that E2 ⊆ E1, and hence that
η ≤ (1− α)n. This finishes the proof (using the fact that 1− α ≤ e−α and taking the logarithm of
both sides).

Another way to view global stability is in the context of pseudo-deterministic algorithms [GG11].
A pseudo-deterministic algorithm is a randomized algorithm which yields some fixed output with
high probability. Thinking of a realizable distribution D as an instance on which PAC-learning
algorithm has oracle access, a globally-stable learner is one which is “weakly” pseudo-deterministic
in that it produces some fixed output with probability bounded away from zero. A different model
of pseudo-deterministic learning, in the context of learning from membership queries, was defined
and studied by Oliveira and Santhanam [OS18].

We prove Theorem 3 by constructing, for a given Littlestone class H, an algorithm A which is
globally-stable with respect to every realizable distribution.

2.4 Boosting for Approximate Differential Privacy

Our characterization of private learnability in terms of the Littlestone dimension has new conse-
quences for boosting the privacy and accuracy guarantees of differentially-private learners. Specif-
ically, it shows that the existence of a learner with weak (but non-trivial) privacy and accuracy
guarantees implies the existence of a learner with any desired privacy and accuracy parameters —
in particular, one with δ(n) = exp(−Ω(n)).

Theorem 8. There exists a constant c > 0 for which the following holds. Suppose that for some
sample size n0 there is an (ε0, δ0)-differentially private learner W for a class H satisfying the
guarantee

Pr
S∼Dn0

[lossD(W(S)) > α0] < β0

for ε0 = 0.1, α0 = β0 = 1/16, and δ0 ≤ c/n20 log n0.
Then there exists a constant CH such that for every α, β, ε, δ ∈ (0, 1) there exists an (ε, δ)-

differentially private learner for H with

Pr
S∼Dn

[lossD(A(S)) > α] < β

whenever n ≥ CH · log(1/βδ)/αε.
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Given a weak learner W as in the statement of Theorem 8, Theorem 2 imply that Ldim(H) is
finite. Hence Theorem 3 allows us to construct a learner for H with arbitrarily small privacy and
accuracy, yielding Theorem 8. The constant CH in the last line of the theorem statement suppresses
a factor depending on Ldim(H).

Prior to our work, it was open whether arbitrary learning algorithms satisfying approximate
differential privacy could be boosted in this strong a manner. We remark, however, that in the case
of pure differential privacy, such boosting can be done algorithmically and efficiently. Specifically,
given an (ε0, 0)-differentially private weak learner as in the statement of Theorem 8, one can first
apply random sampling to improve the privacy guarantee to (pε0, 0)-differential privacy at the
expense of increasing its sample complexity to roughly n0/p for any p ∈ (0, 1). The Boosting-for-
People construction of Dwork, Rothblum, and Vadhan [DRV10] (see also [BCS20]) then produces
a strong learner by making roughly T ≈ log(1/β)/α2 calls to the weak learner. By composition of
differential privacy, this gives an (ε, 0)-differentially private strong learner with sample complexity
roughly n0 · log(1/β)/α2ε.

What goes wrong if we try to apply this argument using an (ε0, δ0)-differentially private weak
learner? Random sampling still gives a (pε0, pδ0)-differentially private weak learner with sam-
ple complexity n0/p. However, this is not sufficient to improve the δ parameter of the learner
as a function of the number of samples n. Thus the strong learner one obtains using Boosting-
for-People still at best guarantees δ(n) = Õ(1/n2). Meanwhile, Theorem 8 shows that the exis-
tence of a (0.1, Õ(1/n2))-differentially private learner for a given class implies the existence of a
(0.1, exp(−Ω(n))-differentially private learner for that class.

We leave it as an interesting open question to determine whether this kind of boosting for
approximate differential privacy can be done algorithmically.

2.5 Related and Subsequent Work

In this work, we determine that the (approximately) differentially-privately learnable classes are
exactly those which are online learnable. We note that PAC learnability under the much stronger
constraint of pure differentially privacy has already been characterized by several natural parame-
ters such as the probabilistic representation dimension [BNS19] and one-way communication com-
plexity [FX15]. These characterizations even imply nearly tight bounds on the optimal sample
complexity. This is in contrast with the equivalence derived in this work whose implied upper and
lower bounds on the sample complexity are extremely far away from each other.

Subsequent to our work, Ghazi, Golowich, Kumar, and Manurangsi [GGKM20] gave a sig-
nificantly improved upper bound of Õ(d6) on the sample complexity of learning any class with
Littlestone dimension d. Moreover, their learning algorithm is proper. There is still an enormous
gap between this and our lower bound of Ω(log∗ d), but both the upper and lower bound are within
polynomial factors of the best possible sample complexity bounds that depend only on the Lit-
tlestone dimension. Thus, despite the fact that DP learnability is characterized by the finiteness
of the Littlestone dimension, it remains wide open to find meaningful quantitative bounds on the
sample complexity of DP learning. This is discussed in more detail in Section 5.4, where we suggest
directions for future work.

Subsequent work has also extended the connection between online learning, global stability,
and private learning to settings beyond binary classification. The private learnability of Little-
stone classes has been studied in multiclass classification [JKT20, BGS21], real-valued classifica-
tion (regression) [JKT20, Gol21], quantum state learning [AQS21], and the online private learning
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model [GL21].
Ghazi, Kumar, and Manurangsi [GKM21] used a generalization of global stability to derive

private learning algorithms for datasets where each individual contributes multiple samples. Global
stability is also related to a definition of reproducibility for machine learning algorithms put forth
by Impagliazzo, Lei, Pitassi, and Sorrell [ILPS22].

Finally, several papers have studied the question of whether computationally efficient reductions
exist between online and private learning. Gonen, Hazan, and Moran [GHM19] gave an efficient
compiler from low sample-complexity pure private learners to online learners, while Bun [Bun20]
showed that under cryptographic assumptions, such a reduction cannot exist in general.

3 Preliminaries

3.1 PAC Learning

We use standard notation from statistical learning; see, e.g., [SSBD14]. Let X be any “domain”
set and consider the “label” set Y = {±1}. A hypothesis is a function h : X → Y , which we
alternatively write as an element of Y X . An example is a pair (x, y) ∈ X × Y . A sample S is a
finite sequence of examples. We also use the following notation: for samples S, T , let S ◦ T denote
the combined sample obtained by appending T to the end of S.

Definition 9 (Population & Empirical Loss). Let D be a distribution over X × {±1}. The popu-
lation loss of a hypothesis h : X → {±1} is defined by

lossD(h) = Pr
(x,y)∼D

[h(x) 6= y].

Let S =
(
(xi, yi)

)n
i=1

be a sample. The empirical loss of h with respect to S is defined by

lossS(h) =
1

n

n∑
i=1

1[h(xi) 6= yi].

Let H ⊆ Y X be a hypothesis class. A sample S is said to be realizable by H if there is
h ∈ H such that lossS(h) = 0. A distribution D is said to be realizable by H if there is h ∈ H
such that lossD(h) = 0. A learning algorithm A is a (possibly randomized) mapping taking input
samples to output hypotheses. We denote by A(S) the distribution over hypotheses induced by
the algorithm when the input sample is S. We say that A learns8 a class H with α-error, (1− β)-
confidence, and sample-complexity m if for every realizable distribution D:

Pr
S∼Dm, h∼A(S)

[lossD(h) > α] ≤ β,

For brevity if A is a learning algorithm with α-error and (1 − β)-confidence we will say that A is
an (α, β)-accurate learner.

8We focus on the realizable case.
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3.2 Online Learning

Littlestone Dimension. The Littlestone dimension is a combinatorial parameter that captures
mistake and regret bounds in online learning [Lit87, BPS09].9 Its definition uses the notion of
mistake trees. A mistake tree is a binary decision tree whose internal nodes are labeled by ele-
ments of X. Any root-to-leaf path in a mistake tree can be described as a sequence of examples
(x1, y1), ..., (xd, yd), where xi is the label of the i’th internal node in the path, and yi = +1 if the
(i + 1)’th node in the path is the right child of the i’th node and yi = −1 otherwise. We say
that a mistake tree T is shattered by H if for any root-to-leaf path (x1, y1), ..., (xd, yd) in T there
is an h ∈ H such that h(xi) = yi for all i ≤ d (see Figure 1). The Littlestone dimension of H,
denoted Ldim(H), is the depth of largest complete tree that is shattered by H. We say that H is
a Littlestone class if it has finite Littlestone dimension.

Littlestone Dimension and Thresholds. Recently, Chase and Freitag [CF18] noticed that the
Littlestone dimension coincides with a model-theoretic measure of complexity, Shelah’s 2-rank.

A classical theorem of Shelah connects bounds on 2-rank (Littlestone dimension) to bounds
on the so-called order property in model theory. The order property corresponds naturally to the
concept of thresholds. Let H ⊆ {±1}X be an hypothesis class. We say that H contains k thresholds
if there are x1, . . . , xk ∈ X and h1, . . . , hk ∈ H such that hi(xj) = 1 if and only if i ≤ j for
all i, j ≤ k.

Shelah’s result (part of the so-called Unstable Formula Theorem10) [She78, Hod97], which we
use in the following translated form, provides a simple and elegant connection between Littlestone
dimension and thresholds.

Theorem 10. (Littlestone dimension and thresholds [She78, Hod97])
Let H be an hypothesis class, then:

1. If the LdimH ≥ d then H contains blog dc thresholds

2. If H contains d thresholds then its LdimH ≥ blog dc.

For completeness, we provide a combinatorial proof of Theorem 10 in Appendix A.
In the context of model theory, Theorem 10 is used to establish an equivalence between finite

Littlestone dimension and stable theories. It is interesting to note that an analogous connection
between theories that are called NIP theories and VC dimension has also been previously observed
and was pointed out by [Las92]; this in turn led to results in Learning theory: in particular within
the context of compression schemes [LS13] but also some of the first polynomial bounds for the VC
dimension for sigmoidal neural networks [KM97].

Mistake Bound and the Standard Optimal Algorithm (SOA). The simplest setting in
which learnability is captured by the Littlestone dimension is called the mistake-bound model [Lit87].
Let H ⊆ {±1}X be a fixed hypothesis class known to the learner. The learning process takes place
in a sequence of trials, where the order of events in each trial t is as follows:

(i) the learner receives an instance xt ∈ X,

9It appears that the name “Littlestone dimension” was coined in [BPS09].
10[She78] provides a qualitative statement, a quantitative one that is more similar to Theorem 10 can be found

at [Hod97]
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Figure 1: A tree shattered by the classH ⊆ {±1}8 that contains the threshold functions ti, where ti(j) = +1
if and only if i ≤ j.

(ii) the learner responses with a prediction ŷt ∈ {±1}, and

(iii) the learner is told whether or not the response was correct.

We assume that the examples given to the learner are realizable in the following sense: For the
entire sequence of trials, there is a hypothesis h ∈ H such that yt = h(xt) for every instance xt
and correct response yt. An algorithm in this model learns H with mistake bound M if for every
realizable sequence of examples presented to the learner, it makes a total of at most M incorrect
predictions.

Littlestone showed that the minimum mistake bound achievable by any online learner is exactly
Ldim(H) [Lit87]. Furthermore, he described an explicit algorithm, called the Standard Optimal
Algorithm (SOA), which achieves this optimal mistake bound.

Standard Optimal Algorithm (SOA)

1. Initialize H1 = H.

2. For trials t = 1, 2, . . . :

(i) For each b ∈ {±1} and x ∈ X, let Hbt(x) = {h ∈ Ht : h(x) = b}. Define
h : X → {±1} by ht(x) = argmaxb Ldim(Hbt(x)).

(ii) Receive instance xt.

(iii) Predict ŷt = ht(xt).

(iv) Receive correct response yt.

(v) Update Ht+1 = Hytt (xt).

Extending the SOA to non-realizable sequences. Our globally-stable learner for Littlestone
classes will make use of an optimal online learner in the mistake bound model. For concreteness,
we pick the SOA (any other optimal algorithm will also work). It will be convenient to extend

12



the SOA to sequences which are not necessarily realizable by a hypothesis in H. We will use the
following simple extension of the SOA to non-realizable samples:

Definition 11 (Extending the SOA to non-realizable sequences). Consider a run of the SOA on
examples (x1, y1), . . . , (xm, ym), and let ht denote the predictor used by the SOA after seeing the
first t examples (i.e., ht is the rule used by the SOA to predict in the (t+ 1)’st trial). Then, after
observing both xt+1, yt+1 do the following:

• If the sequence (x1, y1), . . . , (xt+1, yt+1) is realizable by some h ∈ H then apply the usual
update rule of the SOA to obtain ht+1.

• Else, set ht+1 as follows: ht+1(xt+1) = yt+1, and ht+1(x) = ht(x) for every x 6= xt+1.

Thus, upon observing a non-realizable sequence, this update rule locally updates the maintained
predictor ht to agree with the last example.

3.3 Differential Privacy

We use standard definitions and notation from the differential privacy literature. For more back-
ground see, e.g., the surveys [DR14a, Vad17]. For a, b, ε, δ ∈ [0, 1] let a ≈ε,δ b denote the statement

a ≤ eεb+ δ and b ≤ eεa+ δ.

We say that two probability distributions p, q are (ε, δ)-indistinguishable if p(E) ≈ε,δ q(E) for every
event E.

Definition 12 (Private Learning Algorithm). A randomized algorithm

A : (X × {±1})m → {±1}X

is (ε, δ)-differentially-private if for every two samples S, S′ ∈ (X ×{±1})n that disagree on a single
example, the output distributions A(S) and A(S′) are (ε, δ)-indistinguishable.

We emphasize that (ε, δ)-indistinguishability must hold for every such pair of samples, even if
they are not generated according to a (realizable) distribution.

The parameters ε, δ are usually treated as follows: ε is a small constant (say 0.1), and δ is
negligible, δ = n−ω(1), where n is the input sample size. The case of δ = 0 is also referred to as pure
differential privacy. Thus, a class H is privately learnable if it is PAC learnable by an algorithm A
that is (ε(n), δ(n))-differentially private with ε(n) ≤ 0.1, and δ(n) ≤ n−ω(1).

We will use the following corollary of the Basic Composition Theorem from differential privacy
(see, e.g. Theorem 3.16 in [DR14b]).

Lemma 13 (Composition). [DKM+06, DL09] If p, q are (ε, δ)-indistinguishable then for all k ∈ N,
pk and qk are (kε, kδ)-indistinguishable, where pk, qk are the k-fold products of p, q (i.e. correspond-
ing to k independent samples).
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Private Empirical Learners. For the proof of Theorem 1 it will be convenient to consider the
following task of minimizing the empirical loss.

Definition 14 (Empirical Learner). Algorithm A is (α, β)-accurate empirical learner for a hypothe-
sis classH with sample complexitym if for every h ∈ H and for every sample S = ((x1, h(x1), . . . , (xm, h(xm))) ∈
(X × {±1})m the algorithm A outputs a function f satisfying

Pr
f∼A(S)

(
lossS(f) ≤ α

)
≥ 1− β

This task is simpler to handle than PAC learning, which is a distributional loss minimization
task. Replacing PAC learning by this task does not lose generality; this is implied by the following
result by [BNSV15].

Lemma 15. [[BNSV15], Lemma 5.9] Suppose ε < 1 and A is an (ε, δ)-differentially private (α, β)–
accurate learning algorithm for a hypothesis class H with sample complexity m. Then there exists
an (ε, δ)–differentially private (α, β)–accurate empirical learner for H with sample complexity 9m.

3.4 Additional Notation

A sample S of an even length is called balanced if half of its labels are +1’s and half are −1’s.
For a sample S, let SX denote the underlying set of unlabeled examples: SX =

{
x|(∃y) : (x, y) ∈

S
}

. Let A be a randomized learning algorithm. It will be convenient to associate with A and S
the function AS : X → [0, 1] defined by

AS(x) = Pr
h∼A(S)

[
h(x) = 1

]
.

Intuitively, this function represents the average hypothesis outputted by A when the input sample
is S.

For the next definitions assume that the domain X is linearly ordered. Let S = ((xi, yi))
m
i=1

be a sample. We say that S is increasing if x1 < x2 < . . . < xm. For x ∈ X define ordS(x) by
|{i|xi ≤ x}|. Note that the set of points x ∈ X with the same ordS(x) form an interval whose
endpoints are two consecutive examples in S (consecutive with respect to the order on X, i.e. there
is no example xi between them).

The tower function twrk(x) is defined by the recursion

twr(i)x =

{
x i = 1,

2twr(i−1)(x) i > 1.

The iterated logarithm, log(k)(x) is defined by the recursion

log(i) x =

{
log x i = 0,

1 + log(i−1) log x i > 0.

The function log∗ x equals the number of times the iterated logarithm must be applied before the
result is less than or equal to 1. It is defined by the recursion

log∗ x =

{
0 x ≤ 1,

1 + log∗ log x x > 1.

14



4 Private Learning Implies Finite Littlestone Dimension

In this section we prove that every class H which can be PAC-learned by a DP algorithm has a finite
Littlestone dimension. This is achieved by establishing a lower bound on the sample complexity
of privately learning H which depends on its Littlestone dimension (Theorem 2). The crux of this
lower bound lies in Theorem 1, which provides a lower bound for the task of privately learning 1-
dimensional thresholds. This section is organized as follows. In Section 4.1 we provide an overview
of the proof. Then, in Sections 4.2 and 4.3 we prove Theorems 1 and 2.

4.1 Proof overview

The starting point of the proof is Theorem 10, which asserts that if H has Littlestone dimension d,
then it contains, as a subclass, at least some log d thresholds. In other words, the class of thresholds
is “complete” in the sense that a lower bound on the sample complexity of DP learning thresholds
yields a lower bound for classes with large Littlestone dimension.

Thus, consider an arbitrary differentially private algorithm A that learns the class of thresholds
over an ordered domain X of size n. Our goal is to show a lower bound of Ω(log∗ n) on the sample
complexity of A. A central challenge in the proof emerges because A may be improper and output
arbitrary hypotheses (this is in contrast with proving impossibility results for proper algorithms
where the structure of the learned class can be exploited).

The proof consists of two parts: (i) the first part handles the above challenge by showing that
for any algorithm (in fact, for any mapping that takes input samples to output hypotheses) there
is a large subset of the domain that is homogeneous with respect to the algorithm. This notion of
homogeneity places useful restrictions on the algorithm on input samples from the homogeneous
set. (ii) The second part of the argument utilizes the homogeneity of X ′ ⊆ X to derive a lower
bound on the sample complexity of the algorithm in terms of |X ′|.

We note that the Ramsey argument in the first part is quite general: it does not use the definition
of differential privacy and could perhaps be useful in other sample complexity lower bounds. It is
also worth noting that a Ramsey-based argument was used by [Bun16] in a weaker lower bound
for DP learning thresholds in the proper case. In contrast to the first part, the second (and more
technical) part of the proof is tailored specifically to the definition of differential privacy. We next
outline each of these two parts.

Reduction to Homogeneous Sets. As discussed above, the first step in the proof is about
identifying a large homogeneous subset of the input domain X on which we can control the output
of A. To define homogeneity, recall from Section 3.4 that a sample S = ((xi, yi))

m
i=1 of an even

length is called balanced if half of its labels are +1’s and half are −1’s, and that S is said to be
increasing if x1 < x2 < . . . < xm. Now, a subset X ′ ⊆ X is called homogeneous with respect to A if
there is a list of numbers p0, p1, . . . , pm such that for every increasing balanced sample S of points
from X ′ and for every x′ from X ′ with ordS(x′) = i:

|AS(x′)− pi| ≤ γ,

where γ is sufficiently small. For simplicity, in this proof overview we will assume that γ = 0. (In
the proof γ is some O(1/m) - see Definition 16.) So, for example, if A is deterministic then h = A(S)
is constant over each of the intervals defined by consecutive examples from S. See Figure 2 for an
illustration.
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Figure 2: Depiction of two possible outputs of an algorithm over an homogeneous set, given two input
samples from the set (marked in red). The number pi denote, for a given point x, the probability that
h(x) = 1, where h ∼ A(S) is the hypothesis h outputted by the algorithm on input sample S. These
probabilities depends (up to a small additive error) only on the interval that x belongs to. In the figure
above we changed in the input the fourth example – this only affects the interval and not the values of the
pi’s (again, up to a small additive error).

The derivation of a large homogeneous set follows by a standard application of Ramsey Theorem
for hypergraphs using an appropriate coloring (Lemma 17).

Lower Bound for Homogenous Algorithms. We next assume that X ′ = {1, . . . , k} is a large
homogeneous set with respect to A (with γ = 0). We will obtain a lower bound on the sample
complexity of A, denoted by m, by constructing a family P of distributions such that: (i) on the

one hand |P| ≤ 2Õ(m2), and (ii) on the other hand |P| ≥ Ω(k). Combining these inequalities yields
a lower bound on m in terms of |X ′| = k and concludes the proof.

The construction of P proceeds as follows and is depicted in Figure 3: let S be an increasing
balanced sample of points from X ′. Using the fact that A learns thresholds it is shown that for
some i1 < i2 we have that pi1 ≤ 1/3 and pi2 ≥ 2/3. Thus, by a simple averaging argument there is
some i1 ≤ i ≤ i2 such that pi − pi−1 ≥ Ω(1/m).

The last step in the construction is done by picking an increasing sample S such that the interval
(xi−1, xi+1) has size n = Ω(k). For x ∈ (xi−1, xi+1), let Sx denote the sample obtained by replacing
xi with x in S. By restricting the output hypothesis to the interval (xi−1, xi+1) (which is of size
n), each output distribution A(Sx) can be seen as a distribution over the cube {±1}n. Thus, the
family of distributions P consists of all distributions Px = A(Sx) for x ∈ (xi−1, xi+1). Since A is
private, it follows that P has the following two properties:

• Px′ , Px′′ ∈ P are (ε, δ)-indistinguishable for all x′, x′′ ∈ (xi−1, xi+1), and

• Put r = pi−1+pi
2 , then for all Px ∈ P

(∀x′ ≤ n) : Pr
h∼Px

[
h(x′) = 1

]
=

{
r − Ω(1/m) x′ < x,

r + Ω(1/m) x′ > x.

It remains to show that Ω(k) ≤ |P| ≤ 2Õ(m2). The lower bound follows directly from the definition
of P. The upper bound requires a more subtle argument: it exploits the composition property
for differenital privacy (see Lemma 13) via a privacy-breaching “attack” which is based on binary-
search. This argument appears in Lemma 21, whose proof is self-contained.
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Figure 3: An illustration of the definition of the family P . Given an homogeneous set and two consecutive
intervals where there is a gap of at least Ω(1/m) between pi and pi−1 (here i = 4). The distributions in P
correspond to the different positions of the i’th example, which separates between the (i− 1)’th and the i’th
intervals.

4.2 A Lower Bound for Privately Learning Thresholds

4.2.1 Proof of Theorem 1

The proof uses the following definition of homogeneous sets. Recall the definitions of balanced
sample and of an increasing sample. In particular that a sample S = ((x1, y1), . . . , (xm, ym)) of an
even size is realizable (by thresholds), balanced, and increasing if and only if x1 < x2 < . . . < xm
and the first half of the yi’s are −1 and the second half are +1.

Definition 16 (m-homogeneous set). A set X ′ ⊆ X is m-homogeneous with respect to a learning
algorithm A if there are numbers pi ∈ [0, 1], for 0 ≤ i ≤ m such that for every increasing balanced
realizable sample S ∈

(
X ′ × {±1}

)m
and for every x ∈ X ′ \ SX :∣∣AS(x)− pi

∣∣ ≤ 1

102m
,

where i = ordS(x). The list (pi)
m
i=0 is called the probabilities-list of X ′ with respect to A.

Proof of Theorem 1. Let A be a (1/16, 1/16)-accurate learning algorithm that learns the class of
thresholds over X with m examples and is (ε, δ)-differential private with ε = 0.1, δ = 1

103m2 logm
.

By Lemma 15 we may assume without loss of generality that A is an empirical learner with the
same privacy and accuracy parameters and sample size that is at most 9 times larger.

Theorem 1 follows from the next two lemmas which we prove later:

Lemma 17 (Every algorithm has large homogeneous sets). Let A be a (possibly randomized)
algorithm that is defined over input samples of size m over a domain X ⊆ R with |X| = n. Then,
there is a set X ′ ⊆ X that is m-homogeneous with respect to A of size

|X ′| ≥ log(m)(n)

2O(m logm)
.
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Lemma 17 allows us to focus on a large homogeneous set with respect to A. The next Lemma
implies a lower bound in terms of the size of a homogeneous set. For simplicity and without loss
of generality assume that the homogeneous set is {1, . . . , k}.

Lemma 18 (Large homogeneous sets imply lower bounds for private learning). Let A be an (0.1, δ)-
differentially private algorithm with sample complexity m and δ ≤ 1

103m2 logm
. Let X = {1, . . . , k}

be m-homogeneous with respect to A. Then, if A empirically learns the class of thresholds over X
with (1/16, 1/16)-accuracy, then

k ≤ 2O(m2 log2m)

(i.e. m ≥ Ω
( √

log k
log log k

)
).

With these lemmas in hand, Theorem 1 follows by a short calculation: indeed, Lemma 17
implies the existence of an homogeneous set X ′ with respect to A of size k ≥ log(m)(n)/2O(m logm).
We then restrict A to input samples from the set X ′, and by relabeling the elements of X ′ assume
that X ′ = {1, . . . , k} . Lemma 18 then implies that k = 2O(m2 log2m). Together we obtain that

log(m)(n) ≤ 2c·m
2 logm

for some constant c > 0. Applying the iterated logarithm t = log∗(2c·m
2 logm) = log∗(m) + O(1)

times on the inequality yields that

log(m+t)(n) = log(m+log∗(m)+O(1))(n) ≤ 1,

and therefore log∗(n) ≤ log∗(m) +m+O(1), which implies that m ≥ Ω(log∗ n) as required.

4.2.2 Proof of Lemma 17

We next prove that every learning algorithm has a large homogeneous set. We will use the following
quantitative version of Ramsey Theorem due to [ER52] (see also the book [GRS90], or Theorem
10.1 in the survey by [MS17]):

Theorem 19. [ER52] Let s > t ≥ 2 and q be integers, and let

N ≥ twrt(3sq log q).

Then for every coloring of the subsets of size t of a universe of size N using q colors there is a
homogeneous subset11 of size s.

Proof of Lemma 17. Define a coloring on the (m+ 1)-subsets of X as follows. Let D = {x1 < x2 <
. . . < xm+1} be an (m+ 1)-subset of X. For each i ≤ m+ 1 let D−i = D \ {xi}, and let S−i denote
the balanced increasing sample on D−i. Set pi to be the fraction of the form t

102m
that is closest

to AS−i(xi) (in case of ties pick the smallest such fraction). The coloring assigned to A is the list
(p1, p2, . . . , pm+1).

Thus, the total number of colors is (102m + 1)(m+1). By applying Theorem 19 with t :=
m+ 1, q := (102m+ 1)(m+1), and N := n there is a set X ′ ⊆ X of size

|X ′| ≥ log(m)(n)

3(102m+ 1)m+1(m+ 1) log(102m+ 1)
=

log(m)(N)

2O(m logm)

11A subset of the universe is homogeneous if all of its t-subsets have the same color.
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such that all m + 1-subsets of X ′ have the same color. One can verify that X ′ is indeed m-
homogeneous with respect to A.

4.2.3 Proof of Lemma 18

The lower bound is proven by using the algorithm A to construct a family of distributions P with
certain properties, and use these properties to derive that Ω(k) ≤ P ≤ 2O(m2 log2m), which implies
the desired lower bound.

Lemma 20. Let A,X ′,m, k as in Lemma 18, and set n = k − m. Then there exists a family
P = {Pi : i ≤ n} of distributions over {±1}n with the following properties:

1. Every Pi, Pj ∈ P are (0.1, δ)-indistinguishable.

2. There exists r ∈ [0, 1] such that for all i, j ≤ n:

Pr
v∼Pi

[
v(j) = 1

]
=

{
≤ r − 1

10m j < i,

≥ r + 1
10m j > i.

Lemma 21. Let P, n,m, r as in Lemma 20. Then n ≤ 210
3m2 log2m.

By the above lemmas, k − m = |P| ≤ 210
3m2 log2m, which implies that k = 2O(m2 log2m) as

required. Thus, it remains to prove these lemmas, which we do next.
For the proof of Lemma 20 we will need the following claim:

Claim 22. Let (pi)
m
i=0 denote the probabilities-list of X ′ with respect to A. Then for some 0 < i ≤

m:

pi − pi−1 ≥
1

4m
Proof. The proof of this claim uses the assumption that A empirically learns thresholds. Let S be
a balanced increasing realizable sample such that SX = {x1 < . . . < xm} ⊆ X ′ are evenly spaced
points on K (so, S = (xi, yi)

m
i=1, where yi = −1 for i ≤ m/2 and yi = +1 for i > m2).

A is an (α = 1/16, β = 1/16)-empirical learner and therefore its expected empirical loss on S is
at most (1− β) · α+ β · 1 ≤ α+ β = 1/8, and so:

7

8
≤ E

h∼A(S)
(1− lossS(h))

=
1

m

m/2∑
i=1

[1−AS(xi)] +
1

m

m∑
i=m/2+1

[AS(xi)] . (since S is balanced)

This implies that there is m/2 ≤ m1 ≤ m such that AS(xm1) ≥ 3/4. Next, by privacy if we consider
S′ the sample where we replace xm1 by xm1 + 1 (with the same label), we have that

AS′(xm1) ≥
(3

4
− δ
)
e−0.1 ≥ 2

3
.

Note that ordS′(xm1) = m1 − 1, hence by homogeneity: pm1−1 ≥ 2
3 −

1
102m

. Similarly we can show
that for some 1 ≤ m2 ≤ m

2 we have pm2−1 ≤ 1
3+ 1

102m
. This implies that for somem2−1 ≤ i ≤ m1−1:

pi − pi−1 ≥
1/3

m
− 1

50m2
≥ 1

4m
,

as required.
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Proof of Lemma 20. Let i be the index guaranteed by Claim 22 such that pi − pi−1 ≥ 1/4m. Pick
an increasing realizable sample S ∈

(
X ′ × {±1}

)m
so that the interval J ⊆ X ′ between xi−1 and

xi+1,
J =

{
x ∈ {1, . . . , k} : xi−1 < x < xi+1

}
,

is of size k−m. For every x ∈ J let Sx be the neighboring sample of S that is obtained by replacing
x with xi. This yields family of neighboring samples

{
Sx : x ∈ (xi−1, xi+1)

}
such that

• every two output-distributions A(Sx′), A(Sx′′) are (ε, δ)-indistinguishable (because A satisfies
(ε, δ) differential privacy).

• Set r = pi+1+pi
2 . Then for all x, x′ ∈ J :

Pr
h∼A(Sx)

[
h(x′) = 1

]
=

{
≤ r − 1

10m x′ < x,

≥ r + 1
10m x′ > x.

The proof is concluded by restricting the output of A to J , and identifying J with [n] and
each output-distributions A(Sx) with a distribution over {±1}n.

Proof of Lemma 21. Set T = 103m2 log2m − 1, and D = 102m2 log T . We want to show that
n ≤ 2T+1. Assume towards contradiction that n > 2T+1. Consider the family of distributions
Qi = PDi for i = 1, . . . , n. By Lemma 13, each Qi, Qj are (0.1D, δD)-indistinguishable.

We next define a set of mutually disjoint events Ei for i ≤ 2T that are measurable with respect
to each of the Qi’s. For a sequence of vectors v = (v1, . . . , vD) in {±1}n we let v̄ ∈ {±1}n be the
threshold vector defined by

v̄(j) =

{
−1 1

D

∑D
i=1 vi(j) ≤ r,

+1 1
D

∑D
i=1 vi(j) ≥ r.

Given a point in the support of any of the Qi’s, namely a sequence v = (v1, . . . , vD) of D
vectors in {±1}n define a mapping B according to the outcome of T steps of binary search on v̄
as follows: probe the n

2 ’th entry of v̄; if it is +1 then continue recursively with the first half of v̄.
Else, continue recursively with the second half of v̄. Define the mapping B = B(v) to be the entry
that was probed at the T ’th step. The events Ej correspond to the 2T different outcomes of B.
These events are mutually disjoint by the assumption that n > 2T+1.

Notice that for any possible i in the image of B, applying the binary search on a sufficiently
large i.i.d sample v from Pi would yield B(v) = i with high probability. Quantitatively, a standard
application of Chernoff inequality and a union bound imply that the event Ei = {v : B(v̄) = i} for
v ∼ Qi, has probability at least

1− T exp
(
−2

1

102m2
D
)

= 1− T exp(−2 log T ) ≥ 2

3
.

We claim that for all j ≤ n, and i in the image of B:

Qj(Ei) ≥
1

2
exp(−0.1D). (1)
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This will finish the proof since the 2T events are mutually disjoint, and therefore

1 ≥ Qj(∪iEi)

=
∑
i

Qj(Ei)

≥ 2T · 1

2
e−0.1D

= 2T−1e−0.1D,

however, 2T−1e−0.1D > 1 by the choice of T,D, which is a contradiction.
Thus it remains to prove Equation (1). This follows sinceQi, Qj are (0.1D,Dδ)-indistinguishable:

2

3
≤ Qi(Ei) ≤ exp(0.1D)Qj(Ei) +Dδ,

and by the choice of δ, which implies that 2
3 −Dδ ≥

1
2 .

4.3 Privately Learnable Classes Have Finite Littlestone Dimension

We conclude this part by deriving Theorem 2 which gives a lower bound of Ω(log∗ d) on the sample
complexity of privately learning a class with Littlestone dimension d.

Proof of Theorem 2. The proof is a direct corollary of Theorem 10 and Theorem 1. Indeed, let H
be a class with Littlestone dimension d, and let c = blog dc. By Item 1 of Theorem 10, there are
x1, . . . , xc and h1, . . . , hc ∈ H such that hi(xj) = +1 if and only if j ≥ i. Theorem 1 implies a
lower bound of m ≥ Ω(log∗ c) = Ω(log∗ d) for any algorithm that learns {hi : i ≤ c} with accuracy
(1/16, 1/16) and privacy (0.1, O(1/m2 logm)).

5 Finite Littlestone Dimension Implies Private Learning

In this section we prove that every Littlestone class H is PAC learnable by a DP algorithm (The-
orem 3). We begin by providing a proof overview in Section 5.1. Then, in Section 5.2 we prove
that every Littlestone class can be learned by a globally-stable algorithm, and in Section 5.3 that
globally-stable algorithms can be transformed to DP algorithms. Finally in Section 5.4 we wrap
up by proving Theorem 3.

5.1 Proof Overview

We next give an overview of the main arguments used in the proof of Theorem 3. The proof consist
of two parts: (i) we first show that every class with a finite Littlestone dimension can be learned by
a globally-stable algorithm, and (ii) we then show how to generically obtain a differentially-private
learner from any globally-stable learner.

5.1.1 Step 1: Finite Littlestone Dimension =⇒ Globally-Stable Learning

Let H be a concept class with Littlestone dimension d. Our goal is to design a globally-stable
learning algorithm for H with stability parameter η = 2−2

O(d)
and sample complexity n = 22

O(d)
.
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We will sketch here a weaker variant of our construction which uses the same ideas but is simpler
to describe.

The property of H that we will use is that it can be online learned in the realizable setting with
at most d mistakes (see Section 3.2 for a brief overview of this setting). Let D denote a realizable
distribution with respect to which we wish to learn in a globally-stable manner. That is, D is a
distribution over examples (x, c(x)) where c ∈ H is an unknown target concept. Let A be a learning
algorithm that makes at most d mistakes while learning an unknown concept from H in the online
model. Consider applying A on a sequence S = ((x1, c(x1)) . . . (xn, c(xn))) ∼ Dn, and denote by M
the random variable counting the number of mistakes A makes in this process. The mistake-bound
guarantee on A guarantees that M ≤ d always. Consequently, there is 0 ≤ i ≤ d such that

Pr[M = i] ≥ 1

d+ 1
.

Note that we can identify, with high probability, an i such that Pr[M = i] ≥ 1/2d by running A
on O(d) samples from Dn. We next describe how to handle each of the d+ 1 possibilities for i. Let
us first assume that i = d, namely that

Pr[M = d] ≥ 1

2d
.

We claim that in this case we are done: indeed, after making d mistakes it must be the case that A
has completely identified the target concept c (or else A could be presented with another example
which forces it to make d + 1 mistakes). Thus, in this case it holds with probability at least 1/2d
that A(S) = c and we are done. Let us next assume that i = d− 1, namely that

Pr[M = d− 1] ≥ 1

2d
.

The issue with applying the previous argument here is that before making the d’th mistake, A can
output many different hypotheses (depending on the input sample S). We use the following idea:
draw two samples S1, S2 ∼ Dn independently, and set f1 = A(S1) and f2 = A(S2). Condition on
the event that the number of mistakes made by A on each of S1, S2 is exactly d−1 (by assumption,
this event occurs with probability at least (1/2d)2) and consider the following two possibilities:

(i) Pr[f1 = f2] ≥ 1
4 ,

(ii) Pr[f1 = f2] <
1
4 .

If (i) holds then using a simple calculation one can show that there is h such that Pr[A(S) = h] ≥
1

(2d)2
· 14 and we are done. If (ii) holds then we apply the following “random contest” between S1, S2:

1. Pick x such that f1(x) 6= f2(x) and draw y ∼ {±1} uniformly at random.

2. If f1(x) 6= y then the output is A(S1 ◦ (x, y)), where S1 ◦ (x, y) denotes the sample obtained
by appending (x, y) to the end of S. In this case we say that S1 “won the contest”.

3. Else, f2(x) 6= y then the output is A(S2 ◦ (x, y)). In this case we that S2 “won the contest”.
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Note that adding the auxiliary example (x, y) forcesA to make exactly dmistakes on Si◦(x, y). Now,
if y ∼ {±1} satisfies y = c(x) then by the mistake-bound argument it holds that A(Si ◦ (x, y)) = c.
Therefore, since Pry∼{±1}[c(x) = y] = 1/2, it follows that

Pr
S1,S2,y

[A(Si ◦ (x, y)) = c] ≥ 1

(2d)2
· 3

4
· 1

2
= Ω(1/d2),

and we are done.
Similar reasoning can be used by induction to handle the remaining cases (the next one would

be that Pr[M = d−2] ≥ 1
2d , and so on). As the number of mistakes reduces, we need to guess more

labels, to enforce mistakes on the algorithm. As we guess more labels the success rate reduces,
nevertheless we never need to make more then 2d such guesses. (Note that the random contests
performed by the algorithm can naturally be presented using the internal nodes of a binary tree
of depth ≤ d ). The proof we present in Section 5.2 is based on a similar idea of performing
random contests, although the construction becomes more complex to handle other issues, such as
generalization, which were not addressed here. For more details we refer the reader to the complete
argument in Section 5.2.

5.1.2 Step 2: Globally-Stable Learning =⇒ Differentially-Private Learning

Given a globally-stable learner A for a concept class H, we can obtain a differentially-private
learner using standard techniques in the literature on private learning and query release. If A
is a (η,m)-globally stable learner with respect to a distribution D, we obtain a differentially-
private learner using roughly m/η samples from that distribution as follows. We first run A on
k ≈ 1/η independent samples, non-privately producing a list of k hypotheses. We then apply a
differentially-private “Stable Histograms” algorithm [KKMN09, BNS16b] to this list which allows
us to privately publish a short list of hypotheses that appear with frequency Ω(η). Global stability
of the learner A guarantees that with high probability, this list contains some hypothesis h with
small population loss. We can then apply a generic differentially-private learner (based on the
exponential mechanism) on a fresh set of examples to identify such an accurate hypothesis from
the short list.

5.2 Globally-Stable Learning of Littlestone Classes

5.2.1 Theorem Statement

The following theorem states that any class H with a bounded Littlestone dimension can be learned
by a globally-stable algorithm.

Theorem 23. Let H be a hypothesis class with Littlestone dimension d ≥ 1, let α > 0, and set

m = 22
d+2+14d+1 ·

⌈2d+2

α

⌉
.

Then there exists a randomized algorithm G : (X×{±1})m → {±1}X with the following properties.
Let D be a realizable distribution and let S ∼ Dm be an input sample. Then there exists a hypothesis
f such

Pr[G(S) = f ] ≥ 1

(d+ 1)22d+1
and lossD(f) ≤ α.
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5.2.2 The distributions Dk

The Algorithm G is obtained by running the SOA on a sample drawn from a carefully tailored
distribution. This distribution belongs to a family of distributions which we define next. Each of
these distributions can be sampled from using black-box access to i.i.d. samples from D. Recall
that for a pair of samples S, T , we denote by S ◦T the sample obtained by appending T to the end
of S. Define a sequence of distributions Dk for k ≥ 0 as follows:

Distributions Dk

Let n denote an “auxiliary sample” size (to be fixed later) and let D denote the target real-
izable distribution over examples. The distributions Dk = Dk(D, n) are defined by induction
on k as follows:

1. D0: output the empty sample ∅ with probability 1.

2. Let k ≥ 1. If there exists a f such that

Pr
S∼Dk−1,T∼Dn

[SOA(S ◦ T ) = f ] ≥ 2−2
d+2
,

or if Dk−1 is undefined then Dk is undefined.

3. Else, Dk is defined recursively by the following process:

(i) Draw S0, S1 ∼ Dk−1 and T0, T1 ∼ Dn independently.

(ii) Let f0 = SOA(S0 ◦ T0), f1 = SOA(S1 ◦ T1).
(iii) If f0 = f1 then go back to step (i).

(iv) Else, pick x ∈ {x : f0(x) 6= f1(x)} and sample y ∼ {±1} uniformly.

(v) If f0(x) 6= y then output S0 ◦ T0 ◦
(
(x, y)

)
and else output S1 ◦ T1 ◦

(
(x, y)

)
.

Please see Figure 4 for an illustration of sampling S ∼ Dk for k = 3.
We next observe some basic facts regarding these distributions. First, note that whenever Dk

is well-defined, the process in Item 3 terminates with probability 1.
Let k be such that Dk is well-defined and consider a sample S drawn from Dk. The size

of S is |S| = k · (n + 1). Among these k · (n + 1) examples there are k · n examples drawn
from D and k examples which are generated in Item 3(iv). We will refer to these k examples as
tournament examples. Note that during the generation of S ∼ Dk there are examples drawn from
D which do not actually appear in S. In fact, the number of such examples may be unbounded,
depending on how many times Items 3(i)-3(iii) were repeated. In Section 5.2.3 we will define a
“Monte-Carlo” variant of Dk in which the number of examples drawn from D is always bounded.
This Monte-Carlo variant is what we actually use to define our globally-stable learning algorithm,
but we introduce the simpler distributions Dk to clarify our analysis.

The k tournament examples satisfy the following important properties.

Observation 24. Let k be such that Dk is well-defined and consider running the SOA on the
concatenated sample S ◦ T , where S ∼ Dk and T ∼ Dn. Then
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Figure 4: An illustration of the process of generating a sample S ∼ D3. The edge labels are the samples Tb
drawn in Item 3(i). The node labels are the tournament examples (xb, yb) generated in Item 3(iv). The bold
edges indicate which of the samples Tb0, Tb1 was appended to S in step 3(v) along with the corresponding
tournament example. The sample S generated in this illustration is T010 ◦(x01, y01)◦T01 ◦(x0, y0)◦T0 ◦(x, y).

1. Each tournament example forces a mistake on the SOA. Consequently, the number of mistakes
made by the SOA when run on S ◦ T is at least k.

2. SOA(S ◦ T ) is consistent with T .

The first item follows directly from the definition of x in Item 3(iv) and the definition of S
in Item 3(v). The second item clearly holds when S ◦ T is realizable by H (because the SOA is
consistent). For non-realizable S ◦ T , Item 2 holds by our extension of the SOA in Definition 11.

The Existence of Frequent Hypotheses. The following lemma is the main step in establishing
global stability.

Lemma 25. There exists k ≤ d and an hypothesis f : X → {±1} such that

Pr
S∼Dk,T∼Dn

[SOA(S ◦ T ) = f ] ≥ 2−2
d+2
.

Proof. Suppose for the sake of contradiction that this is not the case. In particular, this means
that Dd is well-defined and that for every f :

Pr
S∼Dd,T∼Dn

[SOA(S ◦ T ) = f ] < 2−2
d+2
. (2)

We show that this cannot be the case when f = c is the target concept (i.e., for c ∈ H which

satisfies lossD(c) = 0). Towards this end, we first show that with probability 2−2
d+2

over S ∼ Dd we
have that all d tournament examples are consistent with c: for k ≤ d let ρk denote the probability
that all k tournament examples in S ∼ Dk are consistent with c. We claim that ρk satisfies the
recursion ρk ≥ 1

2(ρ2k−1−8 ·2−2d+2
). Indeed, consider the event Ek that (i) in each of S0, S1 ∼ Dk−1,

all k − 1 tournament examples are consistent with c, and (ii) that f0 6= f1. Since f0 = f1 occurs
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with probability at most 2−2
d+2

< 8 · 2−2d+2
, it follows that Pr[Ek] ≥ ρ2k−1 − 8 · 2−2d+2

. Further,
since y ∈ {±1} is chosen uniformly at random and independently of S0 and S1, we have that
conditioned on Ek, c(x) = y with probability 1/2. Taken together we have that ρk ≥ 1

2 Pr[Ek] ≥
1
2

(
ρ2k−1 − 8 · 2−2d+2

)
. Since ρ0 = 1 we get the recursive relation

ρk ≥
ρ2k−1 − 8 · 2−2d+2

2
, and ρ0 = 1.

Thus, it follows by induction that for k ≤ d, ρk ≥ 4 · 2−2k+1
: the base case is verified readily, and

the induction step is as follows:

ρk ≥
ρ2k−1 − 8 · 2−2d+2

2

≥ (4 · 2−2k)2 − 8 · 2−2d+2

2
(by induction)

= 8 · 2−2k+1 − 4 · 2−2d+2

≥ 4 · 2−2k+1
(k ≤ d and therefore 2−2

d+2 ≤ 2−2
k+1

)

Therefore, with probability 2−2
d+2

we have that S ◦T is consistent with c (because all examples
in S ◦ T which are drawn from D are also consistent with c). Now, since each tournament example
forces a mistake on the SOA (Observation 24), and since the SOA does not make more than d
mistakes on realizable samples, it follows that if all tournament examples in S ∼ Dd are consistent
with c then SOA(S) = SOA(S ◦ T ) = c. Thus,

Pr
S∼Dd,T∼Dn

[SOA(S ◦ T ) = c] ≥ 2−2
d+2
,

which contradicts Equation 2 and finishes the proof.

Generalization. The next lemma shows that only hypotheses f that generalize well satisfy the
conclusion of Lemma 25 (note the similarity of this proof with the proof of Proposition 7):

Lemma 26 (Generalization). Let k be such that Dk is well-defined. Then every f such that

Pr
S∼Dk,T∼Dn

[SOA(S ◦ T ) = f ] ≥ 2−2
d+2

satisfies lossD(f) ≤ 2d+2

n .

Proof. Let f be a hypothesis such that PrS∼Dk,T∼Dn [SOA(S◦T ) = f ] ≥ 2−2
d+2

and let α = lossD(h).
We will argue that

2−2
d+2 ≤ (1− α)n. (3)

Define the events A,B as follows.

1. A is the event that SOA(S ◦ T ) = f . By assumption, Pr[A] ≥ 2−2
d+2

.

2. B is the event that f is consistent with T . Since |T | = n, we have that Pr[B] = (1− α)n.
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Note that A ⊆ B: Indeed, SOA(S ◦ T ) is consistent with T by the second item of Observation 24.
Thus, whenever SOA(S ◦ T ) = f , it must be the case that f is consistent with T . Hence, Pr[A] ≤
Pr[B], which implies Inequality 3 and finishes the proof (using the fact that 1−α ≤ 2−α and taking
logarithms on both sides).

5.2.3 The Algorithm G

A Monte-Carlo Variant of Dk Consider the following first attempt of defining a globally-
stable learner G: (i) draw i ∈ {0 . . . d} uniformly at random, (ii) sample S ∼ Di, and (iii) output
SOA(S ◦T ), where T ∼ Dn. The idea is that with probability 1/(d+ 1) the sampled i will be equal
to a number k satisfying the conditions of Lemma 25, and so the desired hypothesis f guaranteed
by this lemma (which also has low population loss by Lemma 26) will be outputted with probability

at least 2−2
d
/(d+ 1).

The issue here is that sampling f ∼ Di may require an unbounded number of samples from the
target distribution D (in fact, Di may even be undefined). To circumvent this possibility, we define
a Monte-Carlo variant of Dk in which the number of examples drawn from D is always bounded.

The Distributions D̃k (a Monte-Carlo variant of Dk)

1. Let n be the auxiliary sample size and N be an upper bound on the number of examples
drawn from D.

2. D̃0: output the empty sample ∅ with probability 1.

3. For k > 0, define D̃k recursively by the following process:

(*) Throughout the process, if more than N examples from D are drawn
(including examples drawn in the recursive calls), then output “Fail”.

(i) Draw S0, S1 ∼ D̃k−1 and T0, T1 ∼ Dn independently.

(ii) Let f0 = SOA(S0 ◦ T0), f1 = SOA(S1 ◦ T1).
(iii) If f0 = f1 then go back to step (i).

(iv) Else, pick x ∈ {x : f0(x) 6= f1(x)} and sample y ∼ {±1} uniformly.

(v) If f0(x) 6= y then output S0 ◦ T0 ◦
(
(x, y)

)
and else output S1 ◦ T1 ◦

(
(x, y)

)
.

Note that D̃k is well-defined for every k, even for k such that Dk is undefined (however, for
such k’s the probability of outputting “Fail” may be large).

It remains to specify the upper bound N on the number of examples drawn from D in D̃k.
Towards this end, we prove the following bound on the expected number of examples from D that
are drawn during generating S ∼ Dk:

Lemma 27 (Expected Sample Complexity of Sampling From Dk). Let k be such that Dk is well-
defined, and let Mk denote the number of examples from D that are drawn in the process of gener-
ating S ∼ Dk. Then,

E[Mk] ≤ 4k+1 · n.
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Proof. Note that E[M0] = 0 as D0 deterministically produces the empty sample. We first show
that for all 0 < i < k,

E[Mi+1] ≤ 4E[Mi] + 4n, (4)

and then conclude the desired inequality by induction.
To see why Inequality 4 holds, let the random variable R denote the number of times Item 3(i)

was executed during the generation of S ∼ Di+1. That is, R is the number of times a pair S0, S1 ∼ Di
and a pair T0, T1 ∼ Dn were drawn. Observe that R is distributed geometrically with success
probability θ, where:

θ = 1− Pr
S0,S1,T0,T1

[
SOA(S0 ◦ T0) = SOA(S1 ◦ T1)

]
= 1−

∑
h

Pr
S,T

[
SOA(S ◦ T ) = h

]2
≥ 1− 2−2

d+2
,

where the last inequality follows because i < k and hence Di is well-defined, which implies
that PrS,T

[
SOA(S ◦ T ) = h

]
≤ 2−2

d+2
for all h.

Now, the random variable Mi+1 can be expressed as follows:

Mi+1 =
∞∑
j=1

M
(j)
i+1,

where

M
(j)
i+1 =

{
0 if R < j,

# of examples drawn from D in the j’th execution of Item 3(i) if R ≥ j.

Thus, E[Mi+1] =
∑∞

j=1 E[M
(j)
i+1]. We claim that

E[M
(j)
i+1] = (1− θ)j−1 · (2E[Mi] + 2n).

Indeed, the probability that R ≥ j is (1− θ)j−1 and conditioned on R ≥ j, in the j’th execution of
Item 3(i) two samples from Di are drawn and two samples from Dn are drawn. Thus

E[Mi+1] =
∞∑
j=1

(1− θ)j−1 · (2E[Mi] + 2n) =
1

θ
· (2E[Mi] + 2n) ≤ 4E[Mi] + 4n,

where the last inequality is true because θ ≥ 1− 2−2
d+2 ≥ 1/2.

This gives Inequality 4. Next, using that E[M0] = 0, a simple induction gives

E[Mi+1] ≤ (4 + 42 + . . .+ 4i+1)n ≤ 4i+2n,

and the lemma follows by taking i+ 1 = k.

Proof of Theorem 23. Our globally-stable learning algorithm G is defined as follows.
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Algorithm G

1. Consider the distribution D̃k, where the auxiliary sample size is set to n = d2d+2

α e and

the sample complexity upper bound is set to N = 22
d+2+14d+1 · n.

2. Draw k ∈ {0, 1, . . . , d} uniformly at random.

3. Output h = SOA(S ◦ T ), where T ∼ Dn and S ∼ D̃k.

First note that the sample complexity of G is |S|+ |T | ≤ N +n = (22
d+2+14d+1 + 1) · d2d+2

α e, as
required. It remains to show that there exists a hypothesis f such that:

Pr[G(S) = f ] ≥ 2−2
d+2

d+ 1
and lossD(f) ≤ α.

By Lemma 25, there exists k∗ ≤ d and f∗ such that

Pr
S∼Dk∗ ,T∼Dn

[SOA(S ◦ T ) = f∗] ≥ 2−2
d+2
.

We assume k∗ is minimal, in particular, Dk is well defined for k ≤ k∗. By Lemma 26,

lossD(f∗) ≤ 2d+2

n
≤ α.

We claim that G outputs f∗ with probability at least 2−2
d+2−1. To see this, let Mk∗ denote the

number of examples drawn from D during the generation of S ∼ Dk∗ . Lemma 27 and an application
of Markov’s inequality yield

Pr
[
Mk∗ > 22

d+2+1 · 4d+1 · n
]
≤ Pr

[
Mk∗ > 22

d+2+1 · 4k∗+1 · n
]

(because k∗ ≤ d)

≤ 2−2
d+2−1. (by Markov’s inequality, since E[Mk∗ ] ≤ 4k

∗+1 · n)

Therefore,

Pr
S∼D̃k∗ ,T∼Dn

[SOA(S ◦ T ) = f∗] = Pr
S∼Dk∗ ,T∼Dn

[SOA(S ◦ T ) = f∗ and Mk∗ ≤ 22
d+24d+1 · n]

≥ 2−2
d+2 − 2−2

d+2−1 = 2−2
d−1.

Thus, since k = k∗ with probability 1/(d+1), it follows that G outputs f∗ with probability at least
2−2d+2−1

d+1 as required.

5.3 Globally-Stable Learning Implies Private Learning

In this section we prove that any globally-stable learning algorithm yields a differentially-private
learning algorithm with finite sample complexity.
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5.3.1 Tools from Differential Privacy

We begin by stating a few standard tools from the differential privacy literature which underlie our
construction of a learning algorithm.

Let X be a data domain and let S ∈ Xn. For an element x ∈ X, define freqS(x) = 1
n ·#{i ∈

[n] : xi = x}, i.e., the fraction of the elements in S which are equal to x.

Lemma 28 (Stable Histograms [KKMN09, BNS16b]). Let X be any data domain. For

n ≥ O
(

log(1/ηβδ)

ηε

)
there exists an (ε, δ)-differentially private algorithm Hist which, with probability at least 1 − β, on
input S = (x1, . . . , xn) outputs a list L ⊆ X and a sequence of estimates a ∈ [0, 1]|L| such that

• Every x with freqS(x) ≥ η appears in L and

• For every x ∈ L, the estimate ax satisfies |ax − freqS(x)| ≤ η.

Using the Exponential Mechanism of McSherry and Talwar [MT07], Kasiviswanathan et al. [KLN+11]
described a generic differentially-private learner based on approximate empirical risk minimization.

Lemma 29 (Generic Private Learner [KLN+11]). Let H ⊆ {±1}X be a collection of hypotheses.
For

n = O

(
log |H|+ log(1/β)

αε

)
there exists an ε-differentially private algorithm GenericLearner : (X × {±1})n → H such that the
following holds. Let D be a distribution over (X × {±1}) such that there exists h∗ ∈ H with

lossD(h∗) ≤ α.

Then on input S ∼ Dn, algorithm GenericLearner outputs, with probability at least 1−β, a hypothesis
ĥ ∈ H such that

lossD(ĥ) ≤ 2α.

Our formulation of the guarantees of this algorithm differ slightly from those of [KLN+11], so
we give its standard proof for completeness.

Proof of Lemma 29. The algorithm GenericLearner(S) samples a hypothesis h ∈ H with probability
proportional to exp(−εn lossS(h)/2). This algorithm can be seen as an instantiation of the Expo-
nential Mechanism [MT07]; the fact that changing one sample changes the value of lossS(h) by at
most 1 implies that GenericLearner is ε-differentially private.

We now argue that GenericLearner is an accurate learner. Let E denote the event that the
sample S satisfies the following conditions:

1. For every h ∈ H such that lossD(h) > 2α, it also holds that lossS(h) > 5α/3, and

2. For the hypothesis h∗ ∈ H satisfying lossD(h∗) ≤ α, it also holds that lossS(h∗) ≤ 4α/3.
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We claim that Pr[E] ≥ 1 − β/2 as long as n ≥ O(log(|H|/β)/α). To see this, let h ∈ H be an
arbitrary hypothesis with lossD(h) > 2α. By a multiplicative Chernoff bound12 we have lossS(h) >
7α/4 with probability at least 1 − β/(4|H|) as long as n ≥ O(log(|H|/β)/α). Taking a union
bound over all h ∈ H shows that condition 1. holds with probability at least 1− β/4. Similarly, a
multiplicative Chernoff bound ensures that condition 2 holds with probability at least 1− β/4, so
E holds with probability at least 1− β/2.

Now we show that conditioned on E, the algorithm GenericLearner(S) indeed produces a hy-
pothesis h with lossD(ĥ) ≤ 2α. This follows the standard analysis of the accuracy guarantees of the
Exponential Mechanism. Condition 2 of the definition of event E guarantees that lossS(h∗) ≤ 4α/3.
This ensures that the normalization factor in the definition of the Exponential Mechanism is at
least exp(−2εαn/3). Hence by a union bound,

Pr[lossS(ĥ) > 5α/3] ≤ |H| · exp(−5εαn/6)

exp(−2εαn/3)
= |H|e−εαn/6.

Taking n ≥ O(log(|H|/β)/αε) ensures that this probability is at most β/2. Given that loss(ĥ) ≤
5α/3, Condition 1 of the definition of event E ensures that lossD(ĥ) ≤ 2α. Thus, for n sufficiently
large as described, we have overall that lossD(ĥ) ≤ 2α with probability at least 1− β.

5.3.2 Construction of a Private Learner

We now describe how to combine the Stable Histograms algorithm with the Generic Private Learner
to convert any globally-stable learning algorithm into a differentially-private one.

Theorem 30. Let H be a concept class over data domain X. Let G : (X × {±1})m → {±1}X
be a randomized algorithm such that, for D a realizable distribution and S ∼ Dm, there exists a
hypothesis h such that Pr[G(S) = h] ≥ η and lossD(h) ≤ α/2.

Then for some

n = Õ

(
m · log(1/ηβδ)

ηε
+

log(1/ηβ)

αε

)
there exists an (ε, δ)-differentially private algorithm M : (X × {±1})n → {±1}X which, given n
i.i.d. samples from D, produces a hypothesis ĥ such that lossD(ĥ) ≤ α with probability at least 1−β.

Theorem 30 is realized via the learning algorithm M described below. Here, the parameter

k = Õ

(
log(1/ηβδ)

ηε

)
is chosen so that Lemma 28 guarantees Algorithm Hist succeeds with the stated accuracy parame-
ters. The parameter

n′ = Õ

(
log(1/ηβ)

αε

)
is chosen so that Lemma 29 guarantees that GenericLearner succeeds on a list L of size |L| ≤ 2/η
with the given accuracy and confidence parameters.

12I.e., for independent random variables Z1, . . . , Zn whose sum Z satisfies E[Z] = µ, we have for every δ ∈ (0, 1)
that Pr[Z ≤ (1− δ)µ] ≤ exp(−δ2µ/2) and Pr[Z ≥ (1 + δ)µ] ≤ exp(−δ2µ/3).
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Differentially-Private Learner M

1. Let S1, . . . , Sk each consist of m i.i.d. samples from D. Run G on each batch of samples
producing h1 = G(S1), . . . , hk = G(Sk).

2. Run the Stable Histogram algorithm Hist on input H = (h1, . . . , hk) using privacy
parameters (ε/2, δ) and accuracy parameters (η/8, β/3), producing a list L of frequent
hypotheses.

3. Remove from L all hypotheses with estimated frequency ah < 3η/4.

4. Let S′ consist of n′ i.i.d. samples from D. Run GenericLearner(S′) using the collection
of hypotheses L with privacy parameter ε/2 and accuracy parameters (α/2, β/3) to
output a hypothesis ĥ.

Proof of Theorem 30. We first argue that the algorithm M is differentially private. The outcome L
of step 2 is generated in a (ε/2, δ)-differentially-private manner as it inherits its privacy guarantee
from Hist. For every fixed choice of the coin tosses of G during the executions G(S1), . . . , G(Sk),
a change to one entry of some Si changes at most one outcome hi ∈ H. Differential privacy for
step 2 follows by taking expectations over the coin tosses of all the executions of G, and for the
algorithm as a whole by simple composition.

We now argue that the algorithm is accurate. Using the fact that k ≥ Õ(log(1/β)/η), standard
generalization arguments (see for example [BEHW89] Theorem A3.1) imply that with probability
at least 1− β/3, every h such that PrS∼Dm [G(S) = h] > η satisfies

freqH(h) ≥ 7η

8
.

Let us condition on this event. Then by the accuracy of the algorithm Hist, with probability at least
1−β/2 it produces a list L containing h∗ together with a sequence of estimates that are accurate to
within additive error η/8. In particular, h∗ appears in L with an estimate ah∗ ≥ 7η/8−η/8 ≥ 3η/4.

Now remove from L every item h with estimate ah < 3η/4. Since every estimate is accurate
to within η/8, this leaves a list with |L| ≤ 2/η that contains h∗ with lossD(h∗) ≤ α. Hence, with
probability at least 1− β/3, step 4 succeeds in identifying h∗ with lossD(h∗) ≤ α/2.

The total sample complexity of the algorithm is k ·m+n′ which matches the asserted bound.

5.4 Wrapping up

We now combine Theorem 23 (finite Littlestone dimension =⇒ global stability) with Theorem 30
(global stability =⇒ private learnability) to prove Theorem 3.

Proof of Theorem 3. Let H be a hypothesis class with Littlestone dimension d and let D be any
realizable distribution. Then Theorem 23 guarantees, for m = O(22

d+2+14d+1 · d/α), the existence
of a randomized algorithm G : (X × {±1})m → {±1}X and a hypothesis f such that

Pr[G(S) = f ] ≥ 1

(d+ 1)22d+2+1
and lossD(f) ≤ α/2.
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Taking η = 1/(d+ 1)22
d+2+1, Theorem 30 gives an (ε, δ)-differentially private learner with sample

complexity

n = O

(
m · log(1/ηβδ)

ηε
+

log(1/ηβ)

αε

)
= O

(
2Õ(2d) + log 1/βδ

αε

)
.

6 Conclusion

We conclude this paper with a few suggestions for future work.

1. Sharper Quantitative Bounds. Our upper bound on the differentially-private sample
complexity of a class H has a double exponential dependence on the Littlestone dimen-
sion Ldim(H), while the lower bound by [ALMM19] depends on log∗(Ldim(H)). The work
by [KLM+19] shows that for thresholds, the lower bound is nearly tight (up to a polyno-
mial factor). In a followup work to this paper, [GGKM20] improved the upper bound to
poly(Ldim(H)) (roughly, with an exponent of 6). This is also tight up to polynomial factors
for some classes, in particular, those with maximal Littlestone dimension equal to log |H|.
However the tower-of-exponents gap between the upper bound and the lower bound remains
essentially the same (with 2 fewer levels). We thus pose the following question:

Can every class H be privately learned with sample complexity poly(VC(H), log∗(Ldim(H)))?

2. Characterizing Private Query Release. Another fundamental problem in differentially-
private data analysis is the query release, or equivalently, data sanitization problem: Given
a class H and a sensitive dataset S, output a synthetic dataset Ŝ such that h(S) ≈ h(Ŝ)
for every h ∈ H. In earlier versions of this work, we asked whether finite Littlestone di-
mension characterizes when this task is possible. This was shown to be true by [BLM19]
and [GGKM20].([BLM19] showed how to transform a proper private learner to a sanitizer,
and [GGKM20] proved that every Littlestone class can be learned properly.) However, as
with private classification, massive quantitative gaps between the known upper and lower
bounds remain.

3. Oracle-Efficient Learning. Neel, Roth, and Wu [NRW19] recently began a systematic
study of oracle-efficient learning algorithms: Differentially-private algorithms which are com-
putationally efficient when given oracle access to their non-private counterparts. The main
open question left by their work is whether every privately learnable concept class can be
learned in an oracle-efficient manner. Our characterization shows that this is possible if and
only if Littlestone classes admit oracle-efficient learners.

4. General Loss Functions. It is natural to explore whether the equivalence between on-
line and private learning extends beyond binary classification (which corresponds to the 0-1
loss) to regression and other real-valued losses. These more general loss functions have been
studied in subsequent work [JKT20, AQS21, BGS21, Gol21], though the problem of exactly
characterizing private learnability in the regression setting remains open.
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5. Global Stability. It would be interesting to perform a thorough investigation of global
stability and to explore potential connections to other forms of stability in learning theory,
including uniform hypothesis stability [BE02], PAC-Bayes [McA99], local statistical stabil-
ity [LS19], and others.

6. Differentially-Private Boosting. Can the type of private boosting presented in Section 2.4
be done algorithmically, and ideally, efficiently?
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[CDFS19] José R. Correa, Paul Dütting, Felix A. Fischer, and Kevin Schewior. Prophet inequal-
ities for I.I.D. random variables from an unknown distribution. In Anna Karlin, Nicole
Immorlica, and Ramesh Johari, editors, Proceedings of the 2019 ACM Conference on
Economics and Computation, EC 2019, Phoenix, AZ, USA, June 24-28, 2019, pages
3–17. ACM, 2019.

[CF18] Hunter Chase and James Freitag. Model theory and machine learning. arXiv preprint
arXiv:1801.06566, 2018.

[CF19] Hunter Chase and James Freitag. Model theory and machine learning. The Bulletin
of Symbolic Logic, 25(03):319–332, Feb 2019.

[CGKM19] Rachel Cummings, Varun Gupta, Dhamma Kimpara, and Jamie Morgenstern. On the
compatibility of privacy and fairness. In Adjunct Publication of the 27th Conference on
User Modeling, Adaptation and Personalization, UMAP’19 Adjunct, pages 309–315,
New York, NY, USA, 2019. ACM.

[CHK+19] Alon Cohen, Avinatan Hassidim, Haim Kaplan, Yishay Mansour, and Shay Moran.
Learning to screen. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Flo-
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In Aurélien Garivier and Satyen Kale, editors, Algorithmic Learning Theory, ALT
2019, 22-24 March 2019, Chicago, Illinois, USA, volume 98 of Proceedings of Machine
Learning Research, pages 633–646. PMLR, 2019.

[O’N16] Cathy O’Neil. Weapons of math destruction: How big data increases inequality and
threatens democracy. Crown, New York, first edition edition, 2016.

39



[OS18] Igor Carboni Oliveira and Rahul Santhanam. Pseudo-derandomizing learning and ap-
proximation. In Approximation, Randomization, and Combinatorial Optimization. Al-
gorithms and Techniques, RANDOM ’18, pages 55:1–55:19, 2018.

[She78] Saharon. Shelah. Classification theory and the number of non-isomorphic models.
North-Holland Pub. Co. ; sole distributors for the U.S.A. and Canada, Elsevier/North-
Holland Amsterdam ; New York : New York, 1978.

[SS12] Shai Shalev-Shwartz. Online learning and online convex optimization. Found. Trends
Mach. Learn., 4(2):107–194, February 2012.

[SS21] Menachem Sadigurschi and Uri Stemmer. On the sample complexity of privately learn-
ing axis-aligned rectangles. In M. Ranzato, A. Beygelzimer, K. Nguyen, P.S. Liang,
J.W. Vaughan, and Y. Dauphin, editors, Advances in Neural Information Process-
ing Systems 34: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2021, December 6-14, 2021, virtual, 2021.

[SSBD14] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From
Theory to Algorithms. Cambridge University Press, New York, NY, USA, 2014.

[SSS07] Shai Shalev-Shwartz and Yoram Singer. A primal-dual perspective of online learning
algorithms. Machine Learning, 69(2):115–142, 2007.

[Vad17] Salil Vadhan. The complexity of differential privacy. In Yehuda Lindell, editor, Tu-
torials on the Foundations of Cryptography: Dedicated to Oded Goldreich, chapter 7,
pages 347–450. Springer International Publishing AG, Cham, Switzerland, 2017.

[Val84] Leslie G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–
1142, 1984.

[VC74] Vladimir Vapnik and Alexey Chervonenkis. Theory of Pattern Recognition. Nauka,
1974.

A Proof of Theorem 10

In this appendix we prove Theorem 10. Throughout the proof a labeled binary tree means a full
binary tree whose internal vertices are labeled by instances.

The second part of the theorem is easy. If H contains 2t thresholds then there are hi ∈ H for
0 ≤ i < 2t and there are xj for 0 ≤ j < 2t − 1 such that hi(xj) = 0 for j < i and hi(xj) = 1 for
j ≥ i. Define a labeled binary tree of height t corresponding to the binary search process. That is,
the root is labeled by x2t−1−1, its left child by x2t−1+2t−2−1 and its right child by x2t−1−2t−2−1 and
so on. If the label of an internal vertex of distance q from the root, where 0 ≤ q ≤ t− 1, is xp, then
the label of its left child is xp+2t−q−1 and the label of its right child is xp−2t−q−1 . It is easy to check
that the root-to-leaf path corresponding to each of the functions hi leads to leaf number i from the
right among the leaves of the tree (counting from 0 to 2t − 1).

To prove the first part of the theorem we first define the notion of a subtree T ′ of depth h of a
labeled binary tree T by induction on h. Any leaf of T is a subtree of height 0. For h ≥ 1 a subtree
of height h is obtained from an internal vertex of T together with a subtree of height h− 1 of the
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tree rooted at its left child and a subtree of height h− 1 of the tree rooted at its right child. Note
that if T is a labeled tree and it is shattered by the class H, then any subtree T ′ of it with the
same labeling of its internal vertices is shattered by the class H. With this definition we prove the
following simple lemma.

Lemma 31. Let p, q be positive integers and let T be a labeled binary tree of height p+ q− 1 whose
internal vertices are colored by two colors, red and blue. Then T contains either a subtree of height
p in which all internal vertices are red (a red subtree), or a subtree of height q in which all vertices
are blue (a blue subtree).

Proof: We apply induction on p+ q. The result is trivial for p = q = 1 as the root of T is either
red or blue. Assuming the assertion holds for p′ + q′ < p+ q, let T be of height p+ q− 1. Without
loss of generality assume the root of t is red. If p = 1 we are done, as the root together with a
leaf in the subtree of its left child and one in the subtree of its right child form a red subtree of
height p. If p > 1 then, by the induction hypothesis, the tree rooted at the left child of the root of
T contains either a red subtree of height p− 1 or a blue subtree of height q, and the same applies
to the tree rooted at the right child of the root. If at least one of them contains a blue subtree as
above we are done, otherwise, the two red subtrees together with the root provide the required red
subtree. �

We can now prove the first part of the theorem, showing that if the Littlestone dimension of H
is at least 2t+1 − 1 then H contains t + 2 thresholds. We apply induction on t. If t = 0 we have
a tree of height 1 shattered by H. Its root is labeled by some variable x0 and as it is shattered
there are two functions h0, h1 ∈ H so that h0(x0) = 1, h1(x0) = 0, meaning that H contains two
thresholds, as needed. Assuming the desired result holds for t− 1 we prove it for t, t ≥ 1. Let T be
a labeled binary tree of height 2t+1 − 1 shattered by H. Let h be an arbitrary member of H and
define a two coloring of the internal vertices of T as follows. If an internal vertex is labeled by x
and h(x) = 1 color it red, else color it blue. Since 2t+1 − 1 = 2 · 2t − 1, Lemma 31 with p = q = 2t

implies that T contains either a red or a blue subtree T ′ of height 2t. In the first case define h0 = h
and let X be the set of all variables x so that h(x) = 1. Let x0 be the root of T ′ and let T ′′ be the
subtree of T ′ rooted at the left child of T ′. Let H′ be the set of all h′ ∈ H so that h′(x0) = 0. Note
that H′ shatters the tree T ′′, and that the depth of T ′′ is 2t − 1. We can thus apply the induction
hypothesis and get a set of t + 1 thresholds h1, h2, . . . , ht+1 ∈ H′ and variables x1, x2, . . . , xt ∈ X
so that hi(xj) = 1 iff j ≥ i. Adding h0 and x0 to these we get the desired t+ 2 thresholds.

Similarly, if T contains a blue subtree T ′, define ht+1 = h and let X be the set of all variables x
so that h(x) = 0. In this case denote the root of T ′ by xt and let T ′′ be the subtree of T ′ rooted at
the right child of T ′. Let H′ be the set of all h′ ∈ H so that h′(xt) = 1. As before, H′ shatters the
tree T ′′ whose depth is 2t − 1. By the induction hypothesis we get t + 1 thresholds h0, h1, . . . , ht
and variables x0, x1, . . . , xt−1 ∈ X so that hi(xj) = 1 iff j ≥ i, and the desired result follows by
appending to them ht+1 and xt. This completes the proof. �
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