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Abstract

For a hereditary family of graphs F , let Fn denote the set of all members of F on n

vertices. The speed of F is the function f(n) = |Fn|. An implicit representation of size

`(n) for Fn is a function assigning a label of `(n) bits to each vertex of any given graph

G ∈ Fn, so that the adjacency between any pair of vertices can be determined by their

labels. Bonamy, Esperet, Groenland and Scott proved that the minimum possible size

of an implicit representation of Fn for any hereditary family F with speed 2Ω(n2) is

(1+o(1)) log2 |Fn|/n (= Θ(n)). A recent result of Hatami and Hatami shows that the

situation is very different for very sparse hereditary families. They showed that for

every δ > 0 there are hereditary families of graphs with speed 2O(n logn) that do not

admit implicit representations of size smaller than n1/2−δ. In this note we show that

even a mild speed bound ensures an implicit representation of size O(nc) for some

c < 1. Specifically we prove that for every ε > 0 there is an integer d ≥ 1 so that

if F is a hereditary family with speed f(n) ≤ 2(1/4−ε)n2

then Fn admits an implicit

representation of size O(n1−1/d log n). Moreover, for every integer d > 1 there is a

hereditary family for which this is tight up to the logarithmic factor.
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1 Introduction

A family of graphs F is hereditary if it is closed under taking induced subgraphs. Let

Fn denote the set of all members of F with n vertices. The speed of F is the function
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f(n) = |Fn|. An implicit representation of size `(n) of Fn is a function assigning a label

of `(n) bits to each vertex of any given graph G ∈ Fn, so that the adjacency between any

pair of vertices can be determined by their labels. It is easy and well known (see [14]) that

the existence of such a function is equivalent to the existence of a graph on 2`(n) vertices

which contains every member of Fn as an induced subgraph (here we do not assume that

the function assigning labels has to be efficiently computable). Such a graph is called

an induced-universal graph for Fn. Since we consider here only induced-universal graphs

we simply write, throughout the paper, universal graphs. To see the equivalence observe

that given a function corresponding to an implicit representation of size `(n) the graph

whose vertices are all possible labels in which two are adjacent iff the corresponding labels

determine adjacency in a graph of Fn is a universal graph for Fn. The converse follows

by assigning to each vertex of a graph G ∈ Fn the number of the vertex of the universal

graph that plays its role in a copy of G in this graph.

There is a vast literature dealing with universal graphs for various families, see, e.g.,

[4], [8], [13] and the many references therein. By the above remark, the minimum possible

size `(n) of labels for a family Fn has to satisfy [2`(n)]n ≥ |Fn|, that is, `(n) ≥ log2 |Fn|
n , and

it is known that this is essentially tight in many interesting cases. In particular, this is the

case for the family of all graphs (see [19], [4]). It is also nearly tight for many additional

examples, including all hereditary families satisfying |Fn| = 2Ω(n2). By known results [1],

[9], if |Fn| = 2Ω(n2) then |Fn| = 2(1−1/k)n2/2+o(n2) for some integer k > 1. Bonamy, Esperet,

Groenland and Scott [8] proved that in all these cases there is an implicit representation

with labels of length (1−1/k)n/2+o(n). On the other hand, a recent result of Hatami and

Hatami [13], settling a problem raised by Kannan, Naor and Rudich [14], shows that there

are very sparse hereditary families for which any implicit representation requires labels of

size nearly
√
n. Specifically it is shown in [13] that for every δ > 0 there is a hereditary

family F satisfying |Fn| = 2O(n logn) so that the size of any implicit representation for Fn
is at least Ω(n1/2−δ). It is not clear if the exponent 1/2 can be improved, and it is also

not known what happens for families F with speed f(n) exceeding 2n logn which is 2o(n
2).

It is known that in this range the speed is at most 2n
2−ε

for some fixed ε > 0 (see [5]).

Our contribution here is to show that in all these cases there is an implicit representation

of size at most O(n1−ε).

Theorem 1.1. For any ε > 0 and any integer n0 there is an integer d ≥ 1 so that the

following holds. Let F be a hereditary family of graphs with speed f(n) = |Fn| ≤ 2(1/4−ε)n2

for all n ≥ n0 (and hence f(n) = 2o(n
2)). Then there is an implicit representation of

size at most O(n1−1/d log n) for Fn. In addition, for any such integer d > 1 there is a
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hereditary family for which this is tight up to the log n factor.

The proof of this theorem is presented in the next section. The final section contains

some concluding remarks, including a description of several natural hereditary families

with slowly growing speed functions.

2 Shatter functions and implicit representations

The theorem can be proved using the notion of the VC-dimension of graphs and some of its

properties, but we prefer to describe a proof using the related notion of shatter functions.

This version provides better quantitative bounds in some explicit cases. We proceed with

the details.

For any two integers k, d ≥ 1 let U(k, d) denote the bipartite graph with two vertex

classes A,B satisfying |A| = d, and |B| = k · 2d, where for each subset C ⊂ A there are

exactly k vertices in B whose set of neighbors in A is exactly C. If X,Y are disjoint sets

of vertices of a graph G, let G[X,Y ] denote the bipartite graph induced by the sets X and

Y (ignoring the edges inside X and inside Y ). Call a graph U(k, d)-free if it contains no

two disjoint sets of vertices X,Y so that G[X,Y ] is a copy of U(k, d). Note that the graph

U(d, d) contains every bipartite graph with two classes of vertices, each of size d, as an

induced subgraph. Therefore, if a graph contains a copy of U(d, d) then it contains at least

2d
2

distinct labelled induced subgraphs on 2d vertices. It thus follows that if the speed of

a hereditary family F satisfies f(n) ≤ 2(1/4−ε)n2
for some fixed ε > 0 and all n ≥ n0 then

there is a finite d = d(ε, n0) so that every graph in the family is U(d, d)-free. We proceed

to show that the family of all U(d, d)-free graphs admits an implicit representation of size

at most O(n1−1/d log n).

A set I of coordinates is shattered by a family of binary vectors if the projections of

these vectors on I includes all 2|I| possible binary vectors of length |I|.
We need the following lemma.

Lemma 2.1. Let T be a family of at least

1 + (k + d− 1) · 2d ·
(
t

d

)
+

d−1∑
i=0

(
t

i

)
distinct binary vectors of length t. Then there is a set I of d coordinates shattered k + d

times, namely, every binary function from I to {0, 1} is a projection of at least k + d

distinct vectors in T on I.

3



Proof: As long as T contains more than
∑d−1

i=0

(
t
i

)
vectors there is a shattered set of d

coordinates, by the Sauer-Perles-Shelah Lemma [20]. Removing the 2d shattering vectors

from T and repeating the argument (k+d) ·
(
t
d

)
times we get, by the pigeonhole principle,

the same d-set shattered k + d times. �

For a binary vector v let c(v) denote the number of indices i so that vi 6= vi+1. Note

that these indices partition the set of all indices into c(v)+1 intervals, so that v is constant

on each interval. The primal shatter function of a family of binary vectors is the function

g(t) whose value is the largest number of distinct projections of the vectors on a set of t

coordinates. The following lemma is proved in [22] (after its optimization in [12]), see also

[10], [17]. The formulation in these references is in terms of the notion of spanning trees

with low crossing number. The (equivalent) formulation we use here appears in [6].

Lemma 2.2. Let G be a family of binary vectors of length n with primal shatter function

g(t) ≤ ctd for some constant c > 0 and integer d ≥ 1. Then there is a fixed permutation

of the coordinates of the vectors so that for each permuted vector v, c(v) ≤ O(n1−1/d).

Proof of Theorem 1.1: Let F be a hereditary family with speed f(n) ≤ 2(1/4−ε)n2

for all n ≥ n0. By the assumption and the remark in the first paragraph of this section

there is a finite integer d ≥ 1 so that every member of Fn is U(d, d)-free. For a graph

G ∈ Fn let G be the set of rows of the adjacency matrix of G. These are binary vectors

of length n. We claim that the primal shatter function of these family of vectors satisfies

g(t) ≤ 10td for all t > d. Indeed, otherwise by Lemma 2.1 with k = d there is a set I

of d-coordinates which is shattered 2d times by these vectors. This gives a set A of d

vertices of G and another set B′ of 2d · 2d vertices so that for every subset C of A there

are 2d vertices in B′ whose set of neighbors in A is exactly C. Let B be a subset of

B′ − A containing exactly d vertices for each such subset C. This gives a copy of U(d, d)

contradicting the fact that G contains no such copy. This proves the claim. Therefore by

Lemma 2.2 there is a numbering of the vertices so that according to this numbering the

set of all neighbors of each vertex consists of at most O(n1−1/d) intervals. Assign to each

vertex a label consisting of its number and the endpoints of the corresponding intervals.

This is clearly a valid implicit representation, establishing the required upper bound.

The (near) tightness follows by using the projective norm graphs described in [7].

These are graphs on n vertices with Ω(n2−1/d) edges that contain no copy of the complete

bipartite graph Kd,k with k = (d − 1)! + 1. Our hereditary family F consists of all these

graphs (for all values of n for which they exist) and all their (not necessarily induced)

subgraphs. This is a hereditary family, in fact even a monotone one. It does not contain

an induced copy of U(k, d) and hence, by the argument above which works for U(k, d)
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just as done for U(d, d), admits an implicit representation of size O(n1−1/d log n). Here,

in fact, there is a simpler way to get the existence of such an implicit representation. By

the Kővári-Sós-Turán theorem [15] every graph in Fn is p = O(n1−1/d)-degenerate, hence

there is an ordering of the vertices so that every vertex has at most p neighbors following

it. One can thus assign to each vertex a label consisting of its number in this ordering and

the numbers of its neighbors following it to get the required representation. On the other

hand the speed of F satisfies f(n) ≥ 2Ω(n2−1/d) for every n for which our family contains

one of the projective norm graphs. Therefore each implicit representation for Fn requires

labels of length at least log |Fn|/n = Ω(n1−1/d). This completes the proof. �

3 Concluding remarks and open problems

• The proof of Theorem 1.1 is closely related to the known proof [5] that bounds the

speed of hereditary families which are U(1, d)-free. The crucial additional argument

here is the application of the results of [22] and [12] about spanning trees with low

crossing numbers, as formulated in Lemma 2.2 here, which supplies the desired im-

plicit representation. The proof in [5] bounds the speed of the families, but provides

no economical implicit representation.

• In view of Theorem 1.1 one may suspect that for any sparse hereditary family F
like the ones considered here there is an integer d so that the shortest implicit

representation for Fn is of order n1−1/d up to logarithmic factors. This, however, is

not the case. Indeed, for any small ε > 0 there is a hereditary family F such that for

infinitely many values of n, Fn admits an implicit representation of size O(1
ε log n),

whereas for infinitely many values of n any implicit representation for Fn is of size

at least Ω(εn1−2ε log n). We proceed with a sketch of the proof of this fact. Recall

that a graph is called k-degenerate if any induced subgraph of it contains a vertex

of degree at most k. Equivalently this means that its vertices can be ordered so

that each vertex has at most k neighbors preceding it in this order. The family

of all k-degenerate graphs on n vertices admits an implicit representation of length

O(k log n), since one can assign each vertex a label consisting of its number in an

ordering as above together with the numbers of all its neighbors that precede it in

this order. We need the following simple lemma.

Lemma 3.1. For every small ε > 0 and any n ≥ n0(ε) there is a family Tn of at

least n0.5εn2−2ε
distinct labelled graphs on n vertices, so that every induced subgraph

of each of these graphs on a set of at most nε vertices is 4
ε -degenerate.
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Proof: Put p = n−2ε and let G = G(n, p) be a binomial random graph on a set

of n labelled vertices. If the number of edges of any induced subgraph of G on

any set of c ≤ nε contains less than 2
εc edges, then any such induced subgraph is

4
ε -degenerate. The probability that there is a set of c vertices violating the condition

above is smaller than(
n

c

)(
c2/2

2
εc

)
p

2
ε
c ≤ ncc

2
ε
cn−4c ≤ nc · n2c · n−4c = n−c.

Summing over all values of c, 2
ε ≤ c ≤ n

ε it follows that the probability that there is

such a dense subset is (much) smaller than, say, 0.1. Therefore the total probability

of the graphs G that satisfy the desired condition is at least 0.9. This implies that

their number is larger than the number of all graphs on n vertices with at most p
(
n
2

)
edges (as these are the graphs with the largest probability in the model considered,

and their total probability is 1/2 + o(1) < 0.9). The desired result follows by taking

the set Tn to be the set of all the graphs satisfying the required condition. �

Define, next, the following fast growing sequence of integers. a1 = n0(ε), where

n0(ε) is taken from the previous lemma, and ak+1 = da2/ε
k e for all k ≥ 1. Let F

be the hereditary family of graphs consisting of the union of all graphs in the union

of the families Tak from the previous lemma for all k ≥ 1, and all their induced

subgraphs. For every n which equals ak for some k, the number of graphs in Fn is at

least |Tak | ≥ n0.5εn2−ε
. Therefore any implicit representation for Fn is of length at

least log2(|Fn|)/n = Ω(εn1−2ε log n) (since every member of Fn can be reconstructed

from the n labels of its vertices). On the other hand, for any value of n satisfying

ak < n < a2
k (≤ aεk+1) for some k, every graph in Fn is 4

ε -degenerate, and hence for

any such n the family Fn admits an implicit representation of length O(1
ε log n).

• By Theorem 1.1 if F is a hereditary family with speed f(n) = 2o(n
2) then Fn admits

an implicit representation of size at most O(n1−1/d log n) for some integer d ≥ 1. It

would be interesting to decide if tighter bounds hold when the growth rate of the

speed f(n) is slower. A particularly interesting case is f(n) ≤ 2O(n logn), as this

holds for many interesting hereditary families including all the ones in which every

vertex is a point in a real space of bounded dimension, and the adjacency of two

vertices is determined by the signs of a finite set of bounded degree polynomials

in the coordinates of the corresponding points. Such families, which are hereditary

by definition, include many intersection graphs of simple geometric objects of a

prescribed shape. By a theorem of Warren from real algebraic geometry that deals

with sign patterns of real polynomials [21] (following earlier work of Milnor [18])
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the speed of any such family is at most 2O(n logn), and in many cases it is possible

to obtain nearly tight bounds for the speed. The argument, which is similar to

the one used by Goodman and Pollack in [11] in order to estimate the number

of configurations and polytopes in Rd, found a significant number of applications

following their work. Their initial paper using this approach appears in the very

first volume of the journal Discrete and Computational Geometry they founded in

the mid. 80s. See also [3] and the references therein for several additional early

applications of the method. However, there are quite a few families of this type

for which the existence of economic implicit representations is not known. Simple

examples include intersection graphs of segments or discs in the plane studied in

[16].

• By the main result of [13] for any δ > 0 there are hereditary families with speed

f(n) ≤ 2O(n logn) so that Fn does not admit an implicit representation of size smaller

than n1/2−δ, and the authors of [13] raise the natural question if the constant 1/2

can be improved. Is it possible that such families always admit an implicit repre-

sentation of size O(n1/2 log n)? Similarly, if the speed is smaller than 2n
1+ε

for a

sufficiently small fixed ε > 0, is there always an implicit representation of size at

most O(n2/3 log n)?
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