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Abstract. Given a subset W of an abelian group G, a subset C is called an additive com-

plement for W if W + C = G; if, moreover, no proper subset of C has this property, then

we say that C is a minimal complement for W . It is natural to ask which subsets C can

arise as minimal complements for some W . We show that in a finite abelian group G, every

non-empty subset C of size |C| ≤ |G|1/3/(log2 |G|)2/3 is a minimal complement for some W .

As a corollary, we deduce that every finite non-empty subset of an infinite abelian group is

a minimal complement. We also derive several analogous results for “dual” problems about

maximal supplements.

1. Introduction

The Minkowski sum of two subsets A,B of an (additive) abelian group G is given by

A+B = {a+ b : a ∈ A, b ∈ B}.

Given a subset W ⊆ G, we say that C ⊆ G is an (additive) complement for W in G if W+C = G

(that is, if every g ∈ G can be expressed at least once as g = w + c, for w ∈ W , c ∈ C). If,

moreover, no proper subset C ′ ⊂ C is a complement for W , then we say that C is a minimal

(additive) complement for W in G. Similarly, we say that C ⊆ G is an (additive) supplement for

W in G if the translations of W by elements of C are pairwise disjoint (that is, if every g ∈ G
can be expressed at most once as g = w+c, for w ∈W , c ∈ C). If, moreover, no proper superset

C ′ ⊃ C is a supplement for W , then we say that C is a maximal (additive) supplement for W

in G. The project of this paper is to investigate which sets C arise as minimal complements

and maximal supplements not for a specific subset W but rather for some W . We study these

questions in both finite and infinite abelian groups.

1.1. Background. The study of minimal complements in infinite abelian groups was initiated

by Nathanson [12], who showed that if W is a finite non-empty subset of Z, then every comple-

ment C for W contains a minimal complement C ′ for W . The question of determining which

subsets W of Z admit minimal complements has received considerable attention. Chen and

Yang [7] showed that W ⊆ Z has a minimal complement if it is unbounded both above and

below. It is easy to check that, for instance, N does not have a minimal complement in Z. Kiss,

Sándor, and Yang [10] studied the existence of minimal complements for “eventually periodic”

subsets of Z. There has been some progress in infinite abelian groups other than Z: Biswas and

Saha [5] generalized Nathanson’s result by showing that if G is any abelian group and W is a

finite non-empty subset of G, then any complement to W contains a minimal complement. The

same authors [3] later studied minimal complements in Zr more closely.

We remark that a 1995 paper of Habsieger and Ruzsa [8] treated the closely related matter of

finding C ⊂ Z such that W +C contains a given interval [m] = {1, . . . ,m}. Additive bases and
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asymptotic additive bases, the study of which dates back at least to Lagrange’s Four-Square

Theorem, are of course also related to additive complements. We are not aware of any previous

work on maximal supplements as such, but similar questions have arisen in the context of Sidon

sets (see, e.g., [13] and the references therein).

The natural “inverse problem” for minimal complements is determining whether a given set

C ⊆ G is a minimal complement for some set W (in which case we say simply that C is a

minimal complement in G). This study was initiated by Kwon [11], who showed that every

finite non-empty subset of Z is a minimal complement. Biswas and Saha [4] generalized this

result to Zr.
In infinite groups, the inverse problem for minimal complements can behave quite differently

from the non-inverse problem. Nathanson [12] showed that if W is a finite subset of Z, then

every complement C for W contains a minimal complement C ′ ⊆ C for W . The same is not

true, however, for the inverse problem: for instance C = {0, 1, 2} is a complement for W = 2Z,

but there is no W ′ ⊆ 2Z for which C is a minimal complement. (Of course, C is a minimal

complement for other sets, such as 3Z.)

1.2. Main results. In Section 2, we gather several basic facts about minimal complements,

including that in a finite group G, no subset C ⊂ G of size 2|G|/3 < |C| < |G| can be a minimal

complement. We give a description of the minimal complements in G with size greater than

3|G|/5 and the minimal complements that are arithmetic progressions.

In Section 3, we show with a probabilistic argument that every “small” subset of a finite group

is a minimal complement. Given a finite abelian group G, let T (G) be the greatest integer T

such that every subset C ⊆ G with size at most T is a minimal complement. Moreover, given a

natural number n, let T (n) be the minimum value of T (G) as G ranges over all abelian groups

of order n. In other words, T (n) is the greatest integer T such that for every group G of order

n, every subset C ⊆ G with size at most T is a minimal complement.

Theorem 1. Let G be a group of order n, and let C ⊂ G be subset of size |C| = k. If

0 < k ≤ n1/3

2(log2 n)2/3
,

then C is a minimal complement in G. In other words, T (n) ≥ n1/3

2(log2 n)2/3
.

We remark that this bound (like many in the paper) uses the estimate |C−C| ≤ k2; when we

know that C−C is small, we can often obtain slightly better dependence of n on k. We use this

theorem to obtain a generalization of the result of Biswas and Saha [3] that every nonempty

finite subset of Zr is a minimal complement.

Theorem 2. Let G be an infinite abelian group, and let C be a finite non-empty subset of G.

Then C is a minimal complement in G.

In Section 4, we investigate upper bounds on T (n). By examining groups G with subgroups

of certain sizes, we derive (as a corollary to Proposition 17) that

lim inf
n→∞

T (n)√
n
≤
√

2.

We also obtain an upper bound on T (G) for all finite groups G.

Theorem 3. For every ε > 0, we have that T (G) = O(|G|3/4+ε). In particular, we have that

T (n) = O(n3/4+ε).
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The proof of Theorem 3 goes by showing that, with high probability, a random subset formed

by including independently each element of G with probability p = |G|ε−1/4 is not a minimal

complement. The proof of Theorem 3 works for any p > |G|ε−1/4 that is bounded away from

1. In particular, taking p = 1/2, we see that a subset chosen uniformly at random is with high

probability not a minimal complement.

Say that a subset of an abelian group G is H-invariant for a subgroup H of G if it is

invariant under translation by elements of H. Burcroff and Luntzlara [6] have observed that an

H-invariant subset S ⊆ G is a minimal complement if and only if the image of S in G/H is a

minimal complement. Thus, Theorems 1 and 3 have immediate consequences for H-invariant

subsets when H has finite index.

Corollary 4. When ordered by minimal period, almost all periodic subsets of Z (i.e., subsets

that are nZ-invariant for some n > 0) are not minimal complements.

Indeed, the proof of Theorem 3 shows that almost all nZ-invariant subsets are not minimal

complements. An nZ-invariant subset of Z with minimal period n/k is determined by its

intersection with {0, 1, . . . , n/k − 1}, so we see that all but at most n2n/2 nZ-invariant subsets

have minimal period n, which implies the corollary.

In Section 5, we study “dual” problems about maximal supplements. (For a fixed subset

W , the problems of finding the smallest complement for W and the largest supplement for W

are given by dual integer programs.) It is tempting to hope that, in analogy with the minimal

complement setting, every sufficiently small subset of a finite group is a maximal supplement.

This is not quite the case because every minimal supplement must satisfy a natural “solidity”

condition: we say that a subset C of an abelian group G is solid if C is not properly contained

in any set D such that D − D = C − C. It is in fact true that every sufficiently small solid

subset is a maximal supplement.

Theorem 5. There is an absolute constant b > 0 such that the following holds: Let G be a

finite abelian group, and let C ⊆ G be a non-empty solid subset. If

|C| ≤ b
(
|G|

log |G|

)1/4

,

then C is a maximal supplement in G.

We also show that every finite non-empty solid subset of an infinite abelian group is a maximal

supplement; the proof is completely different from (and in many ways simpler than) the proof

for the finite setting.

Theorem 6. Let G be an infinite abelian group, and let C be a finite non-empty solid subset

of G. Then C is a maximal supplement.

1.3. Open questions. Our results on minimal complements and maximal supplements raise

several natural questions. It would be interesting to find the optimal bound in Theorem 1 and

understand the asymptotic behavior of T (n). Say that f(n) = Θ̃(g(n)) if f = Ω(g(n)(log n)a)

and f(n) = O(g(n)(log n)b) for some integers a, b.

Conjecture 7. We have that T (n) = Θ̃(
√
n). More generally, we have that T (G) = Θ̃(

√
|G|).

Our best constructions of small subsets of finite groups that are not minimal complements

rely on the existence of subgroups of certain orders. In particular, our best upper bound on

T (p) for p prime is O(p3/4+ε).
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Question 8. Is the behavior of T (n) different when n is prime? How much does T (G) depend

on the structure of G in addition to the order of G?

We can also ask the analogous question for maximal supplements. Theorem 5 shows that

non-empty solid subsets of size O((n/ log n)1/4) are maximal supplements, but it is not clear

that this bound is anywhere near optimal.

Question 9. What is the optimal function in Theorem 5?

It is also interesting to consider the case of a random set where each element is included with

probability p and determine when such a set is a minimal complement. Although the property

of being a minimal complement is not monotone, Theorems 1 and 3 (and their proofs) show

that for small values of p a random set is with high probability a minimal complement, and

that for large values of p a random set is with high probability not a minimal complement.

Question 10. How does the probability that a random subset of a finite groupG with parameter

p = p(|G|) is a minimal complement (or maximal supplement) vary with p? Is there a (sharp)

threshold?

2. Preliminaries

We begin with a few general results on the behavior of minimal complements under subgroups

and quotients, which will be useful in the sequel. Note first of all that the collection of minimal

complements in a fixed group G is invariant under translations by elements of G and applications

of automorphisms of G.

Lemma 11. Let G be an abelian group, and let H be a subgroup of G. If the subset C ⊆ H is

a minimal complement in H, then it is also a minimal complement in G.

Proof. Suppose C is a minimal complement for W in H. Let K contain exactly one element

from each coset of H. Then C is a minimal complement for W +K in G: indeed,

(W +K) + C = K + (W + C) = K +H = G

shows that C is a complement for W + K, and minimality follows from the observation that

((W +K) + C) ∩H is the translate of W + C by the unique element of K ∩H. �

Lemma 12. Let C be a subset of an abelian group G, and let π : G→ H be a surjective group

homomorphism such that the restriction of π to C is injective. If π(C) is a minimal complement

(in H), then C is a minimal complement (in G).

Proof. Let W ⊆ H be a subset for which π(C) is a minimal complement. Then we claim that C

is a minimal complement for π−1(W ). Indeed, it is clear that C + π−1(W ) = G (since this set

intersects every coset of ker(π) and is invariant under ker(π)). To see that C is minimal, note

that any proper subset D ⊂ C with D+ π−1(W ) = G would give a proper subset π(D) ⊂ π(C)

that is a minimal complement for W . �

We now turn to the possible sizes of “large” minimal complements in finite groups.

Proposition 13. Let G be a finite abelian group, and let W ⊆ G. If C is a minimal complement

for W , then

|C| ≤ |G| |W |
2|W | − 1

.

In particular, if C 6= G, then |C| ≤ 2|G|/3.
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Proof. The minimality of C guarantees that for each c ∈ C, there is an element x(c) ∈ G such

that x(c) ∈ c+W but x(c) 6∈ c′+W for any c′ 6= c. (Note that these x(c)’s are pairwise distinct.)

Let X = ∪c∈Cx(c). Each of the remaining |G| − |C| elements g ∈ G \ X can be expressed as

the sum of an element of C and an element of W in at most |W | ways. We thus have

|C| · |W | ≤ |C|+ (|G| − |C|)|W |,

and rearranging gives the result. �

In particular, we see that any C of size 3|G|/5 < |C| ≤ 2|G|/3 can be a minimal complement

only for a W of size 2, and it is possible to deduce an explicit structure theorem for minimal

complements of this size. A set C is a minimal complement for some W = {w1, w2} if and only

if it is also a complement for W −w1 = {0, w1−w2}, so we may restrict our attention to sets W

containing the identity. The following characterization of minimal complements of W = {0, a}
holds in all abelian groups G but is most interesting when G is finite.

Proposition 14. Let G be an abelian group, and let W = {0, a} for some non-zero a ∈ G. The

set C ⊆ G is a minimal complement for W if and only if for every g ∈ G, the set C contains

at least one of g and g + a but does not contain all of g, g + a, and g + 2a. This condition is

equivalent to requiring that the intersection of C with any coset of the cyclic group generated by

a neither miss any two consecutive elements nor contain any three consecutive elements.

Proof. Let H be the subgroup generated by a. Since W ⊆ H, we know that C is a minimal

complement forW if and only if the following holds for each coset g+H: first, W+(C∩(g+H)) =

g +H; and second, the translate (C ∩ (g +H))− g is a minimal complement for W in H. The

first condition is satisfied if and only if C contains at least one of g and g − a for every g ∈ G.

For the second condition, consider a complement D for W in H. If there exists x ∈ H such

that x, x + a, x + 2a ∈ D, then D \ {x + a} is also a complement for W in H (which means

that D is not minimal). Suppose, on the contrary, that no such x exists. Let d ∈ D. Then

either d + a or d − a is not in D. In the former case, the sum d + a is uniquely expressed in

D +W ; in the latter case, the sum d+ 0 is uniquely expressed in D +W ; so we conclude that

D is minimal. This completes the proof. �

Finally, we mention that short arithmetic progressions in finite groups are minimal comple-

ments. Recall from Proposition 13 that G does not contain any minimal complements of size

strictly between 2|G|/3 and |G|; the following proposition, together with this fact, tells us that

the sizes of the minimal complements in Z/nZ are exactly 1, 2, . . . , b2n/3c, n.

Before proceeding to the proof, we introduce a useful piece of terminology. Suppose C is a

complement for W in some group G. We say that an element c ∈ C is essential (for this W )

if C \ {c} is no longer a complement for W . Clearly, C being a minimal complement for W is

equivalent to every element c ∈ C being essential.

Proposition 15. Let G be an abelian group of order n, and let C ⊆ G be an arithmetic

progression of length k. Let g + H be the smallest coset that contains C, and write |H| = m.

The set C is a minimal complement if and only if

k ≤ 2nm

2n+m
or k = m.
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Proof. The case k = m is trivial, so we restrict our attention to k < m. We first treat the

special case G = H = Z/nZ. Since the property of being a minimal complement is invariant

under translation and automorphisms, we may assume that C = {0, 1, . . . , k − 1}.
If k ≤ n/2, then we claim that C is a minimal complement for W = {0, k, k + 1, . . . , n− k}.

Indeed, W + C = Z/nZ, and minimality follows from the observation that for every proper

subset D ⊂ C, the sumset D +W fails to cover some element of the interval 0, 1, . . . , k − 1. If

instead n/2 < k ≤ 2n/3, then we claim that C is a minimal complement for W = {0, k}. Again,

it is clear that W + C = Z/nZ, and minimality is only slightly harder. For 0 ≤ r < n− k, the

element k + r is uniquely represented in W + C as k + r, which means that r is essential. For

n− k ≤ r ≤ k− 1, the element r is uniquely represented in W +C as 0 + r, which again means

that r is essential, so we conclude that C is minimal. Proposition 13 tells us that the bound

k ≤ 2n/3 is in fact tight.

We now treat the general case. Since H is clearly cyclic, we may identify it with Z/mZ. By

the translation invariance of minimal complements, we may assume that C ⊆ H and moreover

that C = {0, 1, . . . , k − 1} as a subset of H. If k ≤ 2m/3, then the previous paragraph ensures

that C is a minimal complement in H. By Lemma 11, C is then also a minimal complement in

G. We thus restrict our attention to k > 2m/3.

We construct W by carefully including two elements of each coset of H. Choose representa-

tives g1 +H, . . . , gn/m +H for G/H, so that G = ·∪i(gi +H). Note that

(W ∩ (gi +H)) + C ⊆ gi +H.

Suppose Wi = W ∩ (gi + H) = {gi, gi + si} for some choice of elements si. We ensure that

Wi + C = gi +H (i.e., {0, si}+ C = H) by picking si to satisfy m− k ≤ si ≤ k. Writing

{0, si}+ C = {0, 1, . . . , k − 1} ∪ {si, si + 1, . . . , si + k − 1},

we see that every r ∈ C satisfying si+k−m ≤ r ≤ si−1 or k− si ≤ r ≤ m− si−1 is essential.

Now, take si = i(m− k) for every 1 ≤ i ≤
⌈

k
2(m−k)

⌉
(where the latter quantity is at most n/m

by the hypothesis on the size of k in the statement of the proposition), and set every remaining

si = 1 for larger i. It is now easy to see that every r ∈ C is essential, so we conclude that C is

a minimal complement for this W , as desired.

Proposition 17 (proven in Section 4) gives the converse. �

3. Small sets are minimal complements

We prove Theorem 1 by establishing the following more precise statement. (Theorem 1

follows from setting s = dlog2 ne.) The proof is probabilistic and bears some resemblance to

the argument in [1] that every sufficiently large subset of Z/pZ is a sumset of the form A+A.

Theorem 16. Let G be an abelian group of order n, and let C ⊆ G be a non-empty subset of

order k. If there exists a positive integer s such that

s2k3

n
+
esk3s

ns−1
+ k

(
s2k3

n

)s
< 1, (1)

then C is a minimal complement in G.

Proof. Write C = {c1, c2, . . . , ck}, and fix some s such that (1) holds. For each i ∈ [k], choose s

(not necessarily distinct) elements w
(1)
i , w

(2)
i , . . . , w

(s)
i uniformly and independently at random
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from G. For each i ∈ [k] and p ∈ [s], set

g
(p)
i = w

(p)
i + ci.

We will find a subset W for which C is a minimal complement as follows. First, for each i, we

will choose one element w
(p)
i to include in W (as described below). Next, we will include in W

every w ∈ G such that w + C does not contain any of the s chosen elements g
(p)
i = w

(p)
i + ci.

We will have chosen the w
(p)
i ’s so as to make the corresponding g

(p)
i ’s pairwise distinct; this

condition will guarantee the minimality of C because W + (C \ {ci}) does not contain g
(p)
i . The

main part of the proof is showing that W + C = G with strictly positive probability.

Let E1 be the event that there are distinct pairs (i, p) and (j, q) so that g
(p)
i ∈ w

(q)
j + C.

There are fewer than (sk)2 choices for the pairs (i, p) and (j, q), and for each fixed choice the

probability that g
(p)
i ∈ w

(q)
j + C is exactly k/n, so

P(E1) ≤ s2k3

n
. (2)

Next, let E2 be the event that there exist an element z ∈ G and s distinct pairs (i, p) such

that each (g
(p)
i − C) ∩ (z − C) 6= ∅. There are

n ·
(
sk

s

)
≤ n(ek)s

choices for the element z and the s distinct pairs of indices (i, p). For each such choice, the

probability that (g
(p)
i − C) ∩ (z − C) 6= ∅ for all of the chosen g

(p)
i ’s is at most (k2/n)s: the

choices of the elements g
(p)
i are independent, and for each fixed (i, p) the probability of such a

non-empty intersection is the probability that g
(p)
i ∈ z − C + C, where this set has cardinality

smaller than k2. Therefore

P(E2) ≤ esk3s

ns−1
. (3)

Now, order the elements of each translate z − C of C according to the numbering of the

elements of C, that is, z − c1, z − c2, . . . , z − ck. Let E3 be the event that there is an index

i ∈ [k] such that the following holds: for each p ∈ [s], there are z ∈ G, j 6= i in [k], and q ∈ [s]

such that both
k

s
<
∣∣∣(g(p)

i − C) ∩ (z − C)
∣∣∣ < k (4)

and

(g
(q)
j − C) contains the first element of (z − C) \ (g

(p)
i − C). (5)

There are k possibilities for the index i. Fix such an i, and expose the random elements g
(q)
j for

all j 6= i and for all q. The union of all such translates g
(q)
j −C (call it Y ) has cardinality smaller

than sk2. For each index p and each choice of the element g = g
(p)
i , let Z = Z(g) denote the set

of elements z ∈ G for which (4) holds. For each z ∈ Z(g), let u = u(g) be the first element of

z−C (in the ordering fixed above) not covered by g−C, and let U = U(g) be the set of all such

first elements as z ranges over Z(g). When z ∈ G is chosen uniformly at random, the expected

size of (g−C)∩ (z−C) is k2/n, so Markov’s Inequality tells us that Z(g) (and hence also U(g))

has size at most sk. Note that for any g1, g2 ∈ G, we have the shifts Z(g2) = Z(g1) + g2 − g1

and U(g2) = U(g1) + g2 − g1.

The existence of j 6= i, z and q satisfying (4) and (5) for the index p is equivalent to the

condition that the random set U(g
(p)
i ) intersects the set Y . Since Y is a fixed set of size at most

sk2 (the elements g
(q)
j already having been exposed) and U(g

(p)
i ) is a random shift of a set of
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size at most sk, the probability that they intersect is at most s2k3/n. The events corresponding

to distinct indices p are independent, so the probability of finding such an intersection for all

values of p ∈ [s] is at most (s2k3/n)s. As there are k choices for i, we have

P(E3) ≤ k
(
s2k3

n

)s
. (6)

It follows from the assumption (1) and the inequalities (2), (3), and (6) that with positive

probability none of these three events holds. Fix a choice of the random elements w
(p)
i for which

none of these events holds. For each i ∈ [k], pick a p ∈ [s] such that no choice of z ∈ G, j 6= i in

[k] and q ∈ [s] satisfies (4) and (5). (Such a p exists because the event E3 does not occur). We

now define W to contain these k elements w
(p)
i , together with every element w ∈ G that is not

contained in the union of the chosen g
(p)
i −C’s (i.e., the translates w

(p)
i +ci−C). Since the event

E1 does not occur, we see that each g
(p)
i is uniquely expressible in W + C as w

(p)
i + ci, which

(as discussed above) guarantees the minimality of C. It remains only to show that W +C = G.

Let z ∈ G be an arbitrary element. We have to show that W intersects z − C. If z − C =

g
(p)
i − C for one of our k chosen elements g

(p)
i , then

w
(p)
i = g

(p)
i − ci ∈ g

(p)
i − C = z − C,

as needed. Otherwise, no single translate g
(p)
i −C covers z−C. We will show that in this case,

the k sets g
(p)
i − C do not cover z − C. Since the event E2 does not occur, there are at most

s sets g
(p)
i − C that intersect z − C. We are done unless there is some particular g

(p)
i − C that

covers at least k/s elements of z − C. But then, because the event E3 does not occur, we see

that there is no g
(q)
j such that g

(q)
j −C covers the first element of (z −C) \ (g

(p)
i −C), so z −C

is not covered by the translates g
(p)
i − C. We conclude that z ∈ W + C. Since this holds for

every z ∈ G, we have W + C = G, which completes the proof. �

We now deduce Theorem 2 from Theorem 1.

Proof of Theorem 2. Let G be an infinite abelian group, and let C ⊂ G be a finite subset. First,

suppose G is a torsion group. Then we can find a finite subgroup H containing C such that

|H| > 100|C|4. By Theorem 1, C is a minimal complement in H; Lemma 11 then tells us that

C is also a minimal complement in G.

Second, suppose G is not a torsion group, and let x ∈ G be an element of infinite order. Then

the subgroup H generated by the set C ∪ {x} is finitely generated and has infinite order; write

H = K × Zr, where K is a finite group and r ≥ 1. Choose some M > 100|C|4 such that C

is contained in the “cube” K × [−M,M)r, and let π : H → K × (Z/2MZ)r be the canonical

projection map. Note that π is injective on C. By Theorem 1, π(C) is a minimal complement in

K× (Z/2MZ)r; by Lemma 12, C is a minimal complement in H; by Lemma 11, C is a minimal

complement in G, as desired. �

We remark that one can directly prove a slightly stronger version of Theorem 2 by performing

the construction of the proof of Theorem 1 in the infinite group and using transfinite induction.

Taking s = 1, an examination of the proof shows that one can iteratively construct W by adding

ci + wi for each ci ∈ C, and then adding all other elements that do not destroy the minimality

of C. When we try to find the next wi to add to W , we make sure that the events E1, E2,

and E3 do not occur. This will be true if the chosen wi is not contained in a certain union of

translates of C−C (determined by the elements that we already added to W ), and the number
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of such translates is less than |C| or is finite. We can therefore find an appropriate wi as long as

S+C−C 6= G, for certain subsets S, with the cardinality of S equal to the number of elements

of W already chosen. Therefore this procedure will succeed as long as S + C − C is a proper

subset of G whenever S has cardinality strictly smaller than that of C or is finite. See also the

proof of Theorem 6.

4. Many large sets are not minimal complements

We now turn to the problem of finding upper bounds on T (G). Our first result shows that

T (n) = O(
√
n) under certain divisibility conditions on n. We then proceed with the probabilistic

proof of Theorem 3, which extends to all values of n at the cost of increasing the exponent from

1/2 to 3/4 + ε.

Proposition 17. Let G be an abelian group of order n with a subgroup H of order m, and let

k be an integer satisfying
2nm

m+ 2n
< k < m.

Then no subset C ⊂ H of size k is a minimal complement in G.

Proof. Assume (for the sake of contradiction) that C is a minimal complement for some W in

G. Since C + W = G and C is properly contained in H, we see that W must contain at least

two elements of each of the n/m cosets of H. Consider a coset g+H, and let w1, w2 be distinct

elements of W ∩ (g+H). The translates w1 +C and w2 +C each have size k and are contained

in H. In the sum {w1, w2} + C, each element of g + H is represented at most twice, so (since

there are exactly 2k total sums) at least 2k−m elements are represented twice. It follows that

in the sum

(W ∩ (g +H)) + C = g +H,

there are at most 2m− 2k elements that are uniquely represented. Since this is true of each of

the n/m cosets of H, there are at most

2n(m− k)

m
< k

elements of G that are uniquely represented in W + C. Thus, fewer than k elements of C are

essential, which contradicts the minimality of C. �

Corollary 18. We have that lim infn→∞
T (n)√
n
≤
√

2.

Proof. Let G = Z/nZ, where n = (k + 1)(dk/2e − 1). Then the element dk/2e − 1 generates a

subgroup of order m = k + 1, and Proposition 17 implies that T (Z/nZ) ≤ k. �

We now transition to the proof of Theorem 3. Let G be an abelian group of order n, and let

A be a random subset of G obtained by including each g ∈ G independently with probability

p = n−1/4+ε. In the following discussion, we say that an event holds with high probability (whp)

if it holds with probability tending to 1 as n tends to infinity.

Lemma 19. Let G and A be as above. Then whp |A| = (1 + o(1))n3/4+ε and every complement

B for A (that is, a subset B ⊆ G with A+B = G) satisfies

|B| > 1

4p
loge n =

1

4
n1/4−ε loge n.
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Proof. The fact that |A| = (1 + o(1))n3/4+ε whp is trivial. Fix a subset B with m = 1
4p loge n

elements. There is a subset T ⊆ G with at least n/m2 = Θ̃(n1/2+2ε) elements such that t1 −B
and t2 − B are disjoint for all distinct elements t1, t2 ∈ T (i.e., (T − T ) ∩ (B − B) = {0}). For

each fixed t ∈ T , the probability of t−B being disjoint from A is precisely (1−p)m ≥ n−1/4+o(1).

Thus, the probability that t ∈ B + A (i.e., t−B intersects A) is at most 1− n−1/4+o(1). Since

the events corresponding to distinct elements of T are mutually independent, the choice of T

ensures that T ⊆ A+B with probability at most

(1− n−1/4+o(1))|T | ≤ e−n1/4+ε
.

This is clearly an upper bound for the probability that A + B = G. As there are only
(
n
m

)
=

eΘ̃(n1/4−ε) sets B of size m, it follows that whp there is no such B satisfying A+B = G. �

Lemma 20. Let G and A be as above. Then whp every subset D ⊆ G of size

|D| ≥ (1− ε) 1

4p
loge n = (1− ε)1

4
n1/4−ε loge n

satisfies |G \ (A+D)| ≤ n3/4+ε/2.

Proof. It clearly suffices to prove the statement for every D of cardinality exactly (1−ε) 1
4p loge n.

Fix such a set D. Let H be the Cayley graph of G with respect to (D−D) \ {0}: the graph on

the vertex set G where distinct g1, g2 ∈ G are adjacent if and only if there are d1, d2 ∈ D such

that g1 = g2 + d1− d2 (i.e., the sets g1−D and g2−D intersect). The maximum degree of this

graph is smaller than |D|2. Therefore, by a well known theorem of Hajnal and Szemerédi [9]

(which is convenient to use here but can also be avoided), the graph H has a proper coloring

with at most |D|2 = Θ̃(n1/2−2ε) colors where the color classes differ in size by at most 1.

For each color class C, the number of elements t ∈ C that are not covered by A + D is a

binomial random variable with parameters |C| = Θ̃(n1/2+2ε) and q = (1−p)|D| = n−1/4(1−ε+o(1)).

By the standard estimates for binomial distributions (see, e.g., [2], Appendix A), the probability

the value of this random variable exceeds its expectation by a factor of 2 is exponentially small

in the expectation, which in turn is larger than n1/4+ε. Therefore, whp this does not happen

for any of the color classes and any choice of D, as there are only eΘ̃(n1/4−ε) choices for D. But

this means that whp |G \ (A+D)| ≤ n3/4+ε/2 holds for every such D. �

Using these two lemmas, we proceed with the proof of Theorem 3.

Proof of Theorem 3. Let A be a set of size (1+o(1))n3/4+ε satisfying the conclusions of Lemma

19 and Lemma 20. We claim that A is not a minimal complement. Assume (for contradiction)

that A is a minimal complement for some subset B ⊆ G. Lemma 19 tells us that |B| ≥ 1
4p loge n.

Partition B arbitrarily into t = d1/εe (pairwise disjoint) parts B = B1 ·∪B2 ·∪ . . . ·∪Bt of equal

cardinalities (up to a difference of 1). For each i ∈ [t], let Di = B \ Bi. Then each Di has

cardinality

|Di| ≥ (1− ε)|B| ≥ (1− ε) 1

4p
loge n.

Since A satisfies the conclusion of Lemma 20, each of the t sets A + Di covers all but at most

n3/4+ε/2 of the elements of G. So in the sum A + B, all but at most tn3/4+ε/2 < |A| of the

elements of G are covered by every set A+Di and are hence covered at least twice. In particular,

there are strictly fewer than |A| elements that are covered exactly once, so not every element

of A can be essential, and A is not in fact minimal as a complement for B. This contradiction

completes the proof. �
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5. Maximal supplements

Problems about large supplements are “dual” to problems about small complements in a

natural way: given a subset W of a finite abelian group, the problem of finding the minimum

size of a complement for W and the problem of finding the maximum size of a supplement for

W are dual as integer programs. Of course, not all minimal complements have the minimum

size, and not all maximal complements have the maximum size, but this connection nonetheless

motivates studying the two problems together.

We can characterize being a maximal supplement as follows. C is a supplement to W if and

only if c1 +w1 = c2 +w2 has only the trivial solutions for c1, c2 ∈ C, w1, w2 ∈W . In particular,

this condition is equivalent to (C − C) ∩ (W −W ) = {0}. The maximality condition on C is

that for every d ∈ G\C, the translate d−C intersects W −W nontrivially, i.e., d ∈ C+W −W .

Since C ⊆ C+W −W trivially, this maximality condition can be expressed as C+W −W = G.

So, putting everything together, we have that C is a maximal supplement in G if and only if

there is a subset W satisfying

(C − C) ∩ (W −W ) = {0} and C +W −W = G.

One might ask if inverse results about minimal complements carry over to the setting of

maximal supplements. In particular, one might ask if every finite subset of Z is a maximal sup-

plement and if every sufficiently small subset of a finite abelian group is a maximal supplement.

The answer to each of these questions is “no”, for a simple reason. Recall that a subset C of an

abelian group G is solid if C is not properly contained in any set D such that D−D = C −C.

We show that every maximal supplement is solid.

Proposition 21. Let G be an abelian group. If the subset C ⊆ G is a maximal supplement,

then C must be solid.

Proof. Assume (for the sake of contradiction) that C is a maximal supplement to some W but

C is not solid, and let D be a set properly containing C such that D −D = C − C. Then we

claim that D is also a supplement to W (which will contradict the maximality of C). To see

that this is the case, we simply check

(D −D) ∩ (W −W ) = (C − C) ∩ (W −W ) = {0}

and

D +W −W ⊇ C +W −W = G.

�

Now, we may ask if solidity is sufficient for a set to be a maximal supplement. For finite

subsets of infinite groups, the answer is “yes”. We first require a lemma that establishes a

sufficient condition for C to be a maximal supplement for a particular W .

Lemma 22. Let G be an abelian group, and let C ⊆ G be a non-empty solid subset. If the

subset W ⊆ G satisfies

G \ (W −W ) = (C − C) \ {0},

then C is a maximal supplement for W .

Proof. It is immediate that

(C − C) ∩ (W −W ) = {0}.
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Suppose (for the sake of contradiction) that C +W −W 6= G, and let x ∈ G \ (C +W −W ).

Then x− C is disjoint from W −W , which means that

x− C ⊆ (C − C) \ {0}.

Note that x /∈ C since x−C cannot contain the element 0. Now, the set D = C ∪{x} witnesses

that C is not solid:

(C ∪ {x})− (C ∪ {x}) ⊆ (C − C) ∪ (x− C) ∪ (C − x) ⊆ C − C.

This contradiction lets us conclude that in fact C is a maximal supplement to W . �

We now prove the promised result about finite subsets of infinite groups.

Theorem 6. Let G be an infinite abelian group, and let C ⊂ G be a finite non-empty solid

subset. Then C is a maximal supplement in G.

Proof. We construct a set W for which C is a maximal supplement. Using the well-ordering

principle, fix a bijection of (G\ (C−C))∪{0} with the minimal ordinal of cardinality |G|. This

gives an ordering {gλ}λ∈Λ on (G \ (C −C)) ∪ {0} where 0 is the minimal element of Λ and the

set {α : α < λ} has cardinality strictly smaller than that of G for every λ ∈ Λ. We may take

g0 = 0. We now use transfinite induction to construct a sequence of (increasing) nested subsets

{Wλ}λ∈Λ such that each Wλ satisfies

(C − C) ∩ (Wλ −Wλ) = {0} and gλ′ ∈Wλ −Wλ for all λ′ < λ.

Then it is clear by Lemma 22 that C is a maximal supplement for

W =
⋃
λ∈Λ

Wλ,

since G\ (W −W ) = (C−C)\{0}. For the base cases, set W0 = W1 = {0}. For a limit element

α, we set Wα = ∪λ<αWλ. For a successor element λ+ 1, suppose we already have Wλ. We wish

to find some x ∈ G such that we may “safely” define

Wλ+1 = Wλ ∪ {x, x+ gλ};

in order to ensure that Wλ+1 − Wλ+1 intersects C − C only at 0, it suffices to check that

Wλ − {x, x + gλ} = Wλ − {0, gλ} − {x} is disjoint from C − C (since C − C is symmetric).

Indeed, the induction hypothesis ensures that Wλ −Wλ intersects C − C only at 0, and the

elements ±gλ of Wλ+1 −Wλ+1 are not in C − C by assumption. So we must find x such that

x /∈Wλ − {0, gλ} − C + C.

Since C − C is finite, the set Wλ − {0, gλ} − C + C is finite if Wλ is finite and has cardinality

equal to Wλ if Wλ is infinite. As the cardinality of Wλ is strictly smaller than that of G, there

always exists some such choice of x. �

This argument actually gives the following slightly more general statement.

Theorem 23. Let G be an infinite abelian group, and let C ⊂ G be a non-empty solid subset

such that G 6= S + C − C whenever |S| < |G|. Then C is a maximal supplement in G.
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As was the case for additive complements, the finite group setting is more complex. Our next

aim is showing that every sufficiently small solid subset of a finite abelian group is a maximal

supplement. We again apply Lemma 22. An old result of the first author [1] shows that every

sufficiently large symmetric subset containing 0 of a finite abelian group is a difference set of

the form A−A. The following appears as Theorem 4.1 in [1]. (As discussed in that paper, the

bound is essentially tight.)

Theorem 24 (Alon [1]). There exists an absolute constant c > 0 such that the following holds:

Let G be an abelian group of order n, and let V = −V be a symmetric subset of G containing

0. If

|V | ≥ n− c
√
n/ log n,

then there is some subset A ⊆ G such that V = A−A.

Combining these two pieces shows that every sufficiently small solid subset is a maximal

supplement.

Proof of Theorem 5. We have |C − C| ≤ b2
√
n/ log n, so that V = (G \ (C − C)) ∪ {0} is a

symmetric subset containing 0 and |V | ≥ n− b2
√
n/ log n. By Theorem 24, a sufficiently small

choice of b guarantees the existence of some W ⊆ G such that V = W −W . Since this W

satisfies the conditions of Lemma 22, we conclude that C is a maximal supplement for W . �

As in the proof of Theorem 2, it is possible to deduce Theorem 6 from Theorem 5 by showing

that the property of being a maximal supplement lifts from certain subquotients.
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