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Abstract. Suppose we choose a permutation π uniformly at random from Sn. Let runsort(π) be
the permutation obtained by sorting the ascending runs of π into lexicographic order. Alexandersson
and Nabawanda recently asked if the plot of runsort(π), when scaled to the unit square [0, 1]2,
converges to a limit shape as n → ∞. We answer their question by showing that the measures
corresponding to the scaled plots of these permutations runsort(π) converge with probability 1 to a
permuton (limiting probability distribution) that we describe explicitly. In particular, the support
of this permuton is {(x, y) ∈ [0, 1]2 : x ≤ ye1−y}.

1. Introduction

Let Sn denote the set of permutations of the set [n] = {1, . . . , n}. The scaled plot of a permutation
π = π1 · · ·πn ∈ Sn is the diagram showing the points (i/n, πi/n) for i ∈ [n]. The scaled plot of π is
closely related to the probability measure γπ on the unit square [0, 1]2 defined as follows. Consider
a point (x, y) ∈ [0, 1]2. If (i− 1)/n ≤ x < i/n and (πi − 1)/n ≤ y < πi/n for some i ∈ [n], then γπ
has density n at (x, y); otherwise, γπ has density 0 at (x, y). In other words, we divide [0, 1]2 into
an n× n grid of squares, each with side length 1/n, and we assign each square a constant density
of either n or 0, according to whether or not the upper right corner of the square is a point in the
scaled plot of π.

A permuton is a probability measure γ on the unit square [0, 1]2 that has uniform marginals, in
the sense that γ([a, b]× [0, 1]) = γ([0, 1]× [a, b]) = b− a for all 0 ≤ a ≤ b ≤ 1. Note that if π ∈ Sn,
then γπ is a permuton. (This is why we chose to scale with density n.) There is a natural topology
on the space of permutons obtained by restricting the weak topology on probability measures. This

Figure 1. On the left is the scaled plot of runsort(π), where π is a permutation
chosen uniformly at random from S50000. On the right is the runsort permuton R.
The dark curve C is the support of the singular continuous part of R. Shading
within the region C+ indicates the density of the absolutely continuous part of R.
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coincides with the topology induced by the metric d� defined by

d�(γ1, γ2) = sup
B
|γ1(B)− γ2(B)|,

where we take the supremum over all axis-parallel rectangles in the unit square. There has been
a great deal of recent interest in describing permutons that arise as limits of large random per-
mutations [6]. Several results in this area concern the interplay between random permutations
and permutation patterns [3, 5, 7, 8, 12–15, 19, 21]. In a different direction, Dauvergne [10] recently
proved a beautiful result about permutons arising from random sorting networks (see also [2, 11]).
Our goal in this article is to describe the permuton that emerges when we apply an operator called
runsort to a large random permutation.

An ascending run of a permutation (henceforth called a run for simplicity) is a maximal consec-
utive increasing subsequence. For instance, the runs of 351476298 are 35, 147, 6, 29, and 8. Given
a permutation π ∈ Sn, let runsort(π) be the permutation obtained by sorting the runs of π into
lexicographic order. Equivalently, runsort sorts the runs so that their smallest entries appear in in-
creasing order. For example, runsort(351476298) = 147293568. Note that runsort is an idempotent
operator.

Motivated by the study of flattened partitions (see [9,16,17,22]), Alexandersson and Nabawanda
[4] proved several interesting combinatorial properties of runsort. When they chose π ∈ Sn (for
large n) uniformly at random and plotted the permutation runsort(π), they observed that it tended
to have a very distinctive shape (see the left side of Figure 1). Furthermore, they noticed that the
scaled plot of runsort(π) appeared to be bounded by a certain enveloping curve, and they asked if
this curve approaches some limit curve as n → ∞. In this paper, we answer their question (in a
strong form) by showing that γrunsort(π) converges with high probability to a specific permuton.

Consider the curve
C = {(x, y) ∈ [0, 1]2 : x = ye1−y},

and let
C+ = {(x, y) ∈ [0, 1]2 : x < ye1−y}

be the region in the unit square above C. We define the runsort permuton R to be the permuton
given by

R(B) =

∫
B∩C+

ey−1 dx dy +

∫
B∩C

(1− y) dy

for every measurable set B ⊆ [0, 1]2. Thus, R is the sum of its absolutely continuous part, which
has support C+, and its singular continuous part, which has support C. One can easily confirm by
direct computation that R is in fact a permuton (and we encourage the reader to do this).

Our main result is that R is the limiting distribution for the image under runsort of a large
random permutation.

Theorem 1.1 (Main Theorem). Fix any ε > 0, and choose π(n) uniformly at random from Sn.
Then d�(γrunsort(π(n)),R) < ε with probability tending to 1 as n→∞.

In other words, if we randomly choose permutations π(n), then the measures γrunsort(π(n)) converge

to R with probability 1.
We remark that a combination of absolutely continuous and singular continuous parts, such as

what R exhibits, seems to be rare in previous work on permutons. In our setting, however, it
is quite natural. As will become clear later, the singular part comes from the first entries of the
runs, and the continuous part comes from the remaining entries. A random permutation in Sn has
(n+ 1)/2 runs on average, and the reader can check that indeed half of the total mass of R lies on
the curve C. More surprising is that the pointwise density of R in C+ depends only on the vertical
coordinate y. This “horizontal uniformity” is not combinatorially obvious, and we do not know
how to establish it directly (that is, without recourse to the explicit characterization of R).
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In Section 2, we use martingale concentration inequalities to show that it suffices to understand
the expectation of γrunsort(π(n)). In Section 3, we treat the enveloping curve C and determine the

distribution of mass on it. Section 4 is devoted to the density in the region C+. Section 5 concludes
the proof of Theorem 1.1. Finally, in Section 6, we briefly mention a possible generalization of this
type of question where our methods could be adapted.

1.1. Notation. We write πi for the i-th entry of a permutation π. We write P[A] for the probability
of an event A and write E[X] for the expected value of a random variable X.

2. Concentration of Distribution

Our task is to show that if π is chosen randomly from Sn, then γrunsort(π) is suitably concentrated
everywhere. The key observation is that transposing two entries of π has only a small effect on
γrunsort(π), as long as π does not have any unusually long runs. In order to make this notion precise,
we define the following variant of runsort: Let π ∈ Sn be a permutation, and let A1, . . . , At be the
runs of π. We can break each run Ak into shorter subsequences Ak,1, . . . , Ak,t(k), which we call
segments, as follows: If Ak has length smaller than log n, then set t(k) = 1 and Ak,1 = Ak; if Ak
has length greater than log n, then break it directly before every position (of π) that is an integer
multiple of blog nc, so that Ak,` has length exactly blog nc for 1 < ` < t(k), and Ak,1 and Ak,t(k)
have length at most blog nc. We then define runsort(π) to be the permutation obtained by sorting
the runs Ak,` into lexicographic order. Note that runsort(π) = runsort(π) if all of the runs of π have
length at most blog nc; in particular, the following lemma tells us that if π is chosen randomly from
Sn, then runsort(π) = runsort(π) with probability tending very quickly to 1 as n→∞.

Lemma 2.1. Suppose π is chosen uniformly at random from Sn. If n is sufficiently large, then the
probability that every run of π has length at most log n is at least 1− n−(log logn)/2.

Proof. Let T = blog nc+1. For each i ∈ [n−T +1], the probability that the entries of π in positions
i, i+ 1, . . . , i+ T − 1 appear in increasing order is 1/T !. Therefore, the probability that there is a
run of π of length at least T is at most (n − T + 1)/T !, which, by Stirling’s Formula, is at most

n−(log logn)/2 for n sufficiently large. �

Lemma 2.2. Let B = [x1, x2]× [y1, y2] ⊂ [0, 1]2 be a rectangle. Let π ∈ Sn be a permutation, and
let π′ = π ◦ (i1 i2) be the permutation obtained from π by swapping the entries in positions i1 and
i2 (that is, applying the transposition (i1 i2)). Then |γrunsort(π)(B)− γrunsort(π′)(B)| ≤ 20 log n/n.

Proof. We note that |γrunsort(π)(B) − γrunsort(π′)(B)|, viewed as a function of x1, x2, y1, y2, clearly

attains its maximum value when x1, x2, y1, y2 are all integer multiples of 1/n, so it suffices to prove
the lemma when B has this special form. In this case, we discretize the problem by writing

(1) γrunsort(π)(B) =
#{i : x1n < i ≤ x2n and y1n < runsort(π)i ≤ y2n}

n

(since each point (i, runsort(π)i) contributes mass 1/n after rescaling), and likewise for γrunsort(π′)(B).

When we apply the transposition (i1 i2) to π, all but at most four of the segments Ak,` remain the
same. Since each segment has length at most log n, we see that at most 4 log n entries are in these
“affected” segments. It follows that for each entry j not in one of these affected runs, the horizontal
positions of j in runsort(π) and runsort(π′) differ by at most 4 log n. In particular, these horizontal
positions are either both in the interval (x1n, x2n] or neither in this interval, unless the position in
runsort(π) was within 4 log n of either x1n or x2n. So the change in the numerator on the right-hand
side of (1) coming from these entries is at most 16 log n, and we must absorb an additional error
of 4 log n because we have no control over the positions of the entries of the affected segments. �

(It is possible to replace the constant 20 by 4 in this lemma, but we do not optimize this constant
because it is irrelevant in what follows.)
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We require the following martingale inequality from [18] (see also page 35 of the book [20]).

Proposition 2.3 ([18, 20]). Let f : Sn → R be a function on permutations such that if π, π′ ∈ Sn
differ by a transposition, then |f(π) − f(π′)| ≤ z. Then for π ∈ Sn chosen uniformly at random,
we have

P[|f(π)− E[f ]| ≥ cz] ≤ 2e−c
2/(4n).

We note that by following the standard proof of Azuma’s Inequality (see, e.g., [1, Theorem 7.2.1])
with the obvious modification needed to deal with permutations, it is possible to improve the above
exponent from −c2/(4n) to −c2/(2n), but this is not necessary for our applications.

Before applying this proposition, we fix a bit of notation. For 1 ≤ i, j ≤ n, let pn(i, j) denote the
probability that the entry j is in the i-th position of runsort(π) when π ∈ Sn is chosen uniformly
at random. For B = [x1, x2]× [y1, y2] ⊆ [0, 1]2, let

En(B) =
1

n

∑
x1n<i≤x2n,
y1n<j≤y2n

pn(i, j).

Define the analogous quantities pn(i, j) and En(B) with runsort replaced by runsort.

Lemma 2.4. Fix any small ε > 0, and suppose that π ∈ Sn is chosen uniformly at random. If
n is sufficiently large (as a function of ε), then with probability at least 1 − ε, the concentration
inequality

|γrunsort(π)(B)− En(B)| < ε

holds simultaneously for all axis-parallel rectangles B ⊆ [0, 1]2.

Proof. We make two reductions. First, write B = [x1, x2]× [y1, y2] and define B′ = [x′1, x
′
2]× [y′1, y

′
2]

where x′1 = bnx1c/n, x′2 = bnx2c/n, y′1 = bny1c/n, y′2 = bny2c/n. Then En(B) = En(B′) and

|γrunsort(π)(B)− γrunsort(π)(B′)| ≤ 2/n.

Since this can be made smaller than ε/3, it suffices to show that

|γrunsort(π)(B)− En(B)| < 2ε/3

for all B whose vertices have coordinates that are integer multiples of 1/n. Note that in this case,
the quantities En(B) and En(B) are precisely the expected values of γrunsort(π)(B) and γrunsort(π)(B),
respectively.

Second, we know from Lemma 2.1 that runsort(π) = runsort(π) with probability at least 1 −
n−(log logn)/2. In particular, |pn(i, j) − pn(i, j)| ≤ n−(log logn)/2 for all i, j, so |En(B) − En(B)| ≤
n · n−(log logn)/2. We can make this last quantity smaller than ε/3 by choosing n large enough, so
it suffices to show that with probability at least 1− 2ε/3, the inequality

|γrunsort(π)(B)− En(B)| < ε/3

holds simultaneously for all axis-parallel rectangles B whose coordinates are integer multiples of
1/n.

For each such B with coordinates that are integer multiples of 1/n, combining Lemma 2.2 and
Proposition 2.3 (with z = 20 log n/n and c = εn/60 log n) gives that

|γrunsort(π)(B)− En(B)| < ε/3

with probability at least 1− e−
ε2n

14400(logn)2 . A union bound gives that with probability at least

1− n4e−
ε2n

14400(logn)2 ,

the above inequality holds simultaneously for all B with coordinates that are integer multiples of
1/n, and taking n large guarantees that this probability is at least 1− 2ε/3, as needed. �
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This lemma tells us that it will suffice to work with the expectations En(B). In particular, we
have reduced Theorem 1.1 to the following more manageable-looking statement. For each n, define
the probability measure Rn via Rn(B) = En(B) for all axis-parallel rectangles B ⊆ [0, 1]2.

Theorem 2.5. The measures Rn converge to R as n goes to infinity.

3. The Enveloping Curve

In this section, we address the “singular” behavior that comes from the first entries of runs; as
mentioned in the Introduction, this corresponds to the mass in R that lies on the curve C.

For y ∈ [0, 1] and π ∈ Sn, we let Lπ(y) denote the largest position i ∈ [n] such that πi ≤ yn if
y ≥ 1/n, and we define Lπ(y) = 0 if y < 1/n. In other words, Lπ(y) is the smallest i such that all
of the entries up to yn appear in the first i positions. Note that the curve x = Lπ(y) is the lower
envelope of the scaled plot of π. We start by computing the expected value of Lrunsort(π)(y) and
Lrunsort(π)(y).

Proposition 3.1. Fix y ∈ [0, 1], and suppose that π ∈ Sn is chosen uniformly at random. Then

E[Lrunsort(π)(y)] = nye1−y +O(log n)

and
E[Lrunsort(π)(y)] = nye1−y +O(log n).

Proof. We start with the first statement. For j ∈ [n], define the random variable Xj by

Xj(π) =

{
0, if j is not the beginning of a run of π;

k, if j is the beginning of a run of length k of π.

It follows from the definition of runsort that∑
j≤yn

Xj(π)−m(π) < Lrunsort(π)(y) ≤
∑
j≤yn

Xj(π),

where m(π) is the maximum length of a run in π. We know from Lemma 2.1 that m(π) ≤ log n

with probability at least 1− n−(log logn)/2. Since m(π) ≤ n for all π ∈ Sn, we have

E[Lrunsort(π)(y)] ≥
∑
j≤yn

E[Xj(π)]− (1− n−(log logn)/2) log n− n · n−(log logn)/2.

Hence,

E[Lrunsort(π)(y)] =
∑
j≤yn

E[Xj(π)] +O(log n).

Consider j ∈ [n] with j ≤ yn, and let r be such that πr = j. We wish to estimate the probability

that Xj(π) ≥ k+1 for each k ≥ 0. If k > log n, then P[Xj(π) ≥ k+1] < n−(log logn)/2 by Lemma 2.1
(and this contribution will turn out to be negligible). To handle the case k ≤ log n, note that we
have Xj(π) ≥ k + 1 if and only if the following both hold:

• Either r = 1, or 2 ≤ r ≤ n− k and πr−1 > j;
• j < πr+1 < πr+2 < · · · < πr+k.

Therefore,

P[Xj(π) ≥ k + 1] =
1

n · k!
·
(
n−j
k

)(
n−1
k

) +
n− k − 1

n · k!
·
(
n−j
k+1

)(
n−1
k+1

) .
Note that the first term is at most 1/n. To estimate the second term, we write(

n−j
k+1

)(
n−1
k+1

) =

k∏
t=0

n− j − t
n− 1− t
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=
k∏
t=0

(
1− j

n
+

n− j − jt
n(n− 1− t)

)

=

(
1− j

n
+O

(
k + 1

n

))k+1

= (1− j/n)k+1 +O((k + 1)2/n),

where the last bound uses the fact that k ≤ log n. Combining these estimates yields

P[Xj(π) ≥ k + 1] = O(1/n) +
1

k!
(1− (k + 1)/n)

(
(1− j/n)k+1 +O((k + 1)2/n)

)
=

(1− j/n)k+1

k!
+O(1/n),

again using k ≤ log n. So

E[Xj(π)] =

n−1∑
k=0

P[Xj(π) ≥ k + 1]

=

blognc∑
k=0

(
(1− j/n)k+1

k!
+O(1/n)

)
+O

(
n · n−(log logn)/2

)
= (1− j/n)(e1−j/n +O(1/ blog nc!)) +O(log n/n) +O

(
n · n−(log logn)/2

)
= (1− j/n)e1−j/n +O(log n/n).

Summing over j ≤ yn gives∑
j≤yn

E[Xj(π)] =
∑
j≤yn

(
(1− j/n)e1−j/n +O(log n/n)

)
= n

∫ y

0
(1− t)e1−t dt+O(1) +O(log n)

= nye1−y +O(log n),

and we conclude that
E[Lrunsort(π)(y)] = nye1−y +O(log n).

For the statement about E[Lrunsort(π)(y)], note that Lrunsort(π)(y) = Lrunsort(π)(y) with probability

at least 1− n−(log logn)/2 by Lemma 2.1; when these quantities do differ, they differ by at most n,
and n · n−(log logn)/2 can be absorbed into the error term. �

In order to apply Proposition 2.3, we need an analogue of Lemma 2.2. As in the previous section,
it is more convenient to work with runsort.

Lemma 3.2. Fix y ∈ [0, 1]. Let π ∈ Sn be a permutation, and let π′ = π ◦(i1 i2) be the permutation
obtained from π by swapping the entries in positions i1 and i2. Then

|Lrunsort(π)(y)− Lrunsort(π′)(y)| ≤ 9 log n.

Proof. Write {Ak,`} and {A′k,`} for the sets of segments of π and π′, respectively. As in the proof of

Lemma 2.2, we note that multiplying π on the right by the transposition (i1 i2) affects at most four
of the segments Ak,`, which together contain at most 4 log n entries. In particular, for each entry
j not in one of these affected segments, the horizontal positions of j in runsort(π) and runsort(π′)
differ by at most 4 log n. Hence, the first Lrunsort(π)(y) + 4 log n entries of runsort(π′) certainly
contain all of the entries up to yn except for possibly some of the 4 log n entries in the affected
segments. These missing small entries (if any exist) are contained in at most four segments A′k,`
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of π′, and these segments must appear in runsort(π′) directly after the last run that includes all
smaller entries. Since all runs have length at most log n, we see that all of the entries up to yn are
among the first

Lrunsort(π)(y) + 4 log n+ log n+ 4 log n = Lrunsort(π)(y) + 9 log n

entries of runsort(π′); that is, Lrunsort(π′)(y) ≤ Lrunsort(π)(y) + 9 log n. By the same argument, we

have Lrunsort(π)(y) ≤ Lrunsort(π′)(y) + 9 log n. �

Following the same strategy as in the previous section, we obtain a concentration inequality for
Lrunsort(π)(y).

Lemma 3.3. Fix y ∈ [0, 1], and suppose that π ∈ Sn is chosen uniformly at random. Then with

probability at least 1− 2n−(log logn)/2, we have the concentration inequality

|Lrunsort(π)(y)− nye1−y| = O(
√
n(log n)2).

Proof. Applying Proposition 2.3 with z = 9 log n and c = 2
√
n log n gives that with probability at

least 1−2e−(logn)
2
, the quantity Lrunsort(π)(y) differs from its expectation by at most 18

√
n(log n)2.

Plugging in the estimate from Proposition 3.1, we have that

|Lrunsort(π) − nye1−y| = O(
√
n(log n)2)

with probability at least 1 − 2e−(logn)
2
. Since runsort(π) = runsort(π) with probability at least

1 − n−(log logn)/2 (by Lemma 2.1), we see that in fact |Lrunsort(π) − nye1−y| = O(
√
n(log n)2) holds

with probability at least

1− 2e−(logn)
2 − n−(log logn)/2 > 1− 2n−(log logn)/2. �

When the entry j = yn is the beginning of a run of π, the position of j in runsort(π) is precisely
Lrunsort(π)(y). Thus, the previous lemma tells us that in the scaled plot of runsort(π), the beginnings
of runs cluster around the curve C. To make this precise, let qn(i, j) denote the probability that the
entry j is the beginning of a run of π and is in the i-th position of runsort(π) when π ∈ Sn is chosen
uniformly at random. (Here, qn(i, j) differs from pn(i, j) in that the former looks at only the first
entry of each run and the latter looks at all entries.) We obtain an estimate on the distribution of
qn(i, j) for fixed j.

Lemma 3.4. There exists a constant C > 0 such that the following holds for all y ∈ [0, 1]:∣∣∣∣∣∣
∑

|i−nye1−y |≤C
√
n(logn)2

qn(i, yn)− (1− y + 1/n)

∣∣∣∣∣∣ ≤ 2n−(log logn)/2

and ∑
|i−nye1−y |>C

√
n(logn)2

qn(i, yn) ≤ 2n−(log logn)/2.

Proof. Recall that the entry yn is the beginning of a run of π with probability (n−yn+1)/n. This
implies that

∑
i∈[n] qn(i, yn) = 1− y + 1/n. Both statements now follow from Lemma 3.3. �

Let us summarize in words what this lemma tells us about the contribution to the measures Rn

(and eventually also R) from the beginnings of runs: This contribution is concentrated close to
the curve C, and the “weighting” in the y-direction is (1− y) dy. We will make these observations
precise in Section 5.

Finally, we record a version of this result that will be convenient in the next section.

Lemma 3.5. There exists a constant C > 0 such that the following holds for all y ∈ [0, 1]: If

` > C
√
n(log n)2 and k ≥ yn are integers, then qn(nye1−y − `, k) ≤ 2n−(log logn)/2.
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Proof. This follows from Lemma 3.3 and the observation that y ≤ y′ implies that Lrunsort(π)(y) ≤
Lrunsort(π)(y

′) for every π. �

4. The Interior Density

We now compute the limiting density for the non-singular part of the permuton. Suppose that
π is a random permutation of length n. Recall that pn(i, j) denotes the probability that the entry
j is in the i-th position of runsort(π). In the previous section, we analyzed the case where the entry
j is the beginning of a run of π, so we focus on the remaining case: Let p′n(i, j) = pn(i, j)− qn(i, j)
denote the probability that the entry j is in the i-th position of runsort(π) and is not the beginning
of a run of π. We will be interested in the situation where i = xn and j = yn for fixed x, y ∈ (0, 1),
where the point (x, y) lies in C+ (i.e., strictly above C) and n tends to infinity. By the results of the
previous section, we know that p′n(i, j) is very close to pn(i, j) in this regime. Whenever we use xn
or yn as an input for a function that takes integer values (such as pn, p′n, or qn), we really mean
dxne and dyne; we simply omit the ceiling symbols to avoid a typhoon of ceiling symbols.

Fix n and i, j ∈ [n] with i > 1, and suppose that we obtain π by first picking a random
permutation π′ on [n] \ {j} and then inserting the entry j in a random position. Let k denote the
entry in the (i− 1)-th position of runsort(π). The following two descriptions define the same event:

• The entry j is in the i-th position of runsort(π) and is not the beginning of a run of π.
• k < j, and the entry j was inserted directly after the entry k in π.

The probability of the first bullet point occurring is (by definition) p′n(i, j), and the probability of
the second bullet point occurring is

1

n

∑
1≤k<j

pn−1(i− 1, k) =
1

n

1−
∑

j≤k≤n−1
pn−1(i− 1, k)

 .

Putting these together, we find that

(2) p′n(i, j) =
1

n

1−
∑

j≤k≤n−1
pn−1(i− 1, k)

 .

Since pn(i, j) and p′n(i, j) are very close, we incur a very small error if we replace pn−1(i − 1, k)
with p′n−1(i− 1, k) on the right-hand side; we will address this carefully below. So, up to this small
error, p′n(i, j) is equal to

1

n

1−
∑

j≤k≤n−1
p′n−1(i− 1, k)

 .

Note that we have the boundary conditions p′n(1, j) = 0 for all j and p′n(i, n) = 1/n for 1 < i < n.
We now define the quantities p̃n(i, j) recursively via

p̃n(i, j) =
1

n

1−
∑

j≤k≤n−1
p̃n−1(i− 1, k)

 ,

with the same boundary conditions p̃n(1, j) = 0 and p̃n(i, n) = 1/n for 1 < i < n. We will see that
p′n(xn, yn) and p̃n(xn, yn) are very close as long as n is sufficiently large (with respect to (x, y)).

By repeatedly applying the recurrence relation for p̃, we can express p̃n(i, j) as a sum of terms
involving p̃n−i+1(1, k) (for j ≤ k ≤ n− i+1) and p̃n−r(i−r, n−r) (for i−r > 1 and j ≤ k ≤ n−r),
together with some constant terms:

• The terms p̃n−i+1(1, k) vanish by our boundary conditions.
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• Each term p̃n−r(i− r, n− r) is equal to 1/(n− r) (by our boundary conditions) and appears(
n−j+r−1

r−1
)

times (by stars and bars), always weighted by 1
n(n−1)···(n−r+1) and carrying the

sign (−1)r. Here, r ranges from 1 to min{n− j, i− 2}; call the latter quantity M .

• Each constant term (−1)s
n(n−1)···(n−s) appears

(
n−j
s

)
times, where s ranges from 0 to M .

Putting everything together, we arrive at the explicit formula

p̃n(i, j) =

M∑
r=1

(−1)r

n(n− 1) · · · (n− r)

(
n− j + r − 1

r − 1

)
+

M∑
s=0

(−1)s

n(n− 1) · · · (n− s)

(
n− j
s

)
.

We remark that the only dependence on i is contained in the value of M . In the regime i ≥ n−j+2,
we see that M (and hence also p̃n(i, j)) is completely independent of i; this is a hint of the horizontal
uniformity alluded to in the Introduction. For i = xn and j = yn with n tending to infinity, the
second sum (call it S2) will contribute the main term, and the first sum (call it S1) will contribute
a negligible error. Note that in this setting, M is asymptotically a positive constant multiple of n
(since x, y ∈ (0, 1)).

We begin with the first sum. Expanding the binomial coefficient gives

S1 =

M∑
r=1

(−1)r

(r − 1)!
· 1

n(n− 1)
· (n− j + r − 1)(n− j + r − 2) · · · (n− j + 1)

(n− 2)(n− 3) · · · (n− r)
.

Writing n− j = (1− y)n, we estimate

n− j + t

n− r + t− 1
= 1− j

n
+
j(t− r − 1) + n(r − 1)

n(n− r + t− 1)
= (1− y) +O(r/n)

uniformly in n, r, t (so the implied constant depends only on (x, y)). Then

S1 =
1

n(n− 1)

M∑
r=1

(−1)r

(r − 1)!

(
(1− y)r−1 +O

(
r2r−1/n

))
=
−ey−1

n2
+O(1/n3),

which is o(1/n).
Performing the analogous computation for the second sum, we find that

S2 =

M∑
s=0

(−1)s

s!
· 1

n
· (n− j)(n− j − 1) · · · (n− j − s+ 1)

(n− 1)(n− 2) · · · (n− s)

=
1

n

M∑
s=0

(−1)s

s!
((1− y)s +O((s+ 1)2s+1/n))

=
ey−1

n
+O(1/n2).

In summary, we have established the following proposition.

Proposition 4.1. Fix x, y ∈ (0, 1) such that (x, y) ∈ C+. Then

p̃n(xn, yn) =
ey−1

n
+O(1/n2),

where the implicit constant depends only on (x, y).

It remains to bound the difference between p̃ and p′. This consists of keeping track of the error
terms q = p− p′ when we iterate the recurrence (2). At the `-th stage, the number of terms pn−` is((1−y)n

`

)
(by stars and bars), and each such term is scaled (up to a sign) by 1

n(n−1)···(n−`+1) . Let Q
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be the maximum of the error terms q (which are certainly nonnegative). By the triangle inequality,
we may ignore the signs of the errors, and we find that

|p′n(xn, yn)− p̃n(xn, yn)| ≤ Q
(1−y)n∑
`=1

(
(1− y)n

`

)
1

n(n− 1) · · · (n− `+ 1)
≤ Q

(1−y)n∑
`=1

1

`!
= O(Q).

We now bound Q.

Lemma 4.2. Fix x, y ∈ (0, 1) such that (x, y) ∈ C+. If n is sufficiently large (depending on (x, y)),
then the following holds: For all 1 ≤ ` ≤ min{xn− 1, (1− y)n} and all yn ≤ k ≤ n− `, we have

qn−`(xn− `, k) ≤ 2(yn)−(log log(yn))/2.

Proof. We wish to apply Lemma 3.5 with n replaced by n− `. Let ε = ye1−y − x (which is strictly
positive). First, we check that

k ≥ yn ≥ y(n− `).
Second, we wish to show that xn−` < (n−`)ye1−y−C

√
n− `(log(n−`))2 (where C is the constant

from Lemma 3.5); this inequality rearranges to

εn+ `(1− ye1−y) > C
√
n− `(log(n− `))2.

The term 1− ye1−y is nonnegative, and we see that the inequality holds as long as n is sufficiently
large (depending on y and ε). So we can apply Lemma 3.5, which tells us that

qn−`(xn− `, k) ≤ 2(n− `)−(log log(n−`))/2.

The right-hand side is an increasing function of `, so the bound ` ≤ (1 − y)n gives the desired
inequality. �

The previous lemma implies that Q ≤ 2(yn)−(log log(yn))/2 (which is certainly O(1/n2)) for n
sufficiently large, so we can deduce the main result of this section. (For y = 1, recall from above
that p′n(xn, n) = 1/n.)

Lemma 4.3. Fix x, y ∈ (0, 1] such that (x, y) ∈ C+. Then

p′n(xn, yn) =
ey−1

n
+O(1/n2),

where again the implied constant depends only on (x, y).

Let us summarize in words what this lemma tells us about the contribution to the measures
Rn (and eventually also R) from the entries that are not the beginnings of runs: In C+, this
contribution gives a density e1−y dx dy at the point (x, y); note that this is independent of x. We
have said nothing about the contribution below C; that this contribution is 0 follows quickly from
Lemma 3.3, but in fact we will give an alternative argument in the next section.

5. Putting Everything Together

We finally prove Theorem 2.5, which implies Theorem 1.1. The main idea is that we have already
accounted for 100% of the mass of R in our discussions in the previous two sections; this means that
there will not be any mass below the curve C and that we do not need to worry about additional
contributions very close to C from entries that are not the beginnings of runs.

For each axis-parallel rectangle B ⊆ [0, 1]2, it follows from Lemmas 3.4 and 4.3 that

lim inf
n→∞

Rn(B) ≥
∫
B∩C+

ey−1 dx dy +

∫
B∩C

(1− y) dy = R(B).
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Now fix an axis-parallel rectangle B1 ⊆ [0, 1]2. Choose a tiling of [0, 1]2 by axis-parallel rectangles
B1, . . . , B5 (such a tiling certainly exists). We have

1 = lim sup
n→∞

Rn([0, 1]2) =

5∑
a=1

lim sup
n→∞

Rn(Ba) ≥
5∑

a=1

lim inf
n→∞

Rn(Ba) ≥
5∑

a=1

R(Ba) = R([0, 1]2) = 1.

These inequalities must all be equalities, so lim
n→∞

Rn(B1) exists and equals R(B1). As B1 was

arbitrary, this completes the proof of Theorem 2.5.

6. A Generalized Setting

In this brief concluding section, we mention a setting in which the ideas presented earlier—
especially those concerning the concentration inequalities derived in Section 3—still hold.

The standardization of a sequence of n distinct integers is the permutation in Sn that has the same
relative order as the sequence. For example, the standardization of 4917 is 2413. Let F ⊆

⋃
n≥0 Sn

be a family of permutations, and let Fn = F ∩ Sn. Assume that every permutation obtained by
taking the standardization of a prefix of a permutation in F is also in F . Let us also assume that
F contains the permutation 1 ∈ S1 and that there is some constant c > 1 such that |Fn| < n!/cn

for all sufficiently large n.
We can use the family F to split an arbitrary permutation π ∈ Sn into subsequences as follows.

Let π[a,b] denote the subsequence of π consisting of entries in positions a, a+ 1, . . . , b, and let π[a,b]
be the standardization of π[a,b]. Set k0 = 1. Then let k1 be the smallest integer that is greater than
k0 and satisfies π[k0,k1] 6∈ F ; we make the convention that k1 = n + 1 if π ∈ F . If k1 6= n + 1, let
k2 be the smallest integer that is greater than k1 and satisfies π[k1,k2] 6∈ F ; we make the convention
that k2 = n+ 1 if π[k1,n] ∈ F . Continue defining integers ki in this greedy fashion until reaching a
step at which kr = n+ 1. Note that π[k0,k1−1], π[k1,k2−1], . . . , π[kr−1,kr−1] all belong to the family F .
Let us call the subsequences π[k0,k1−1], π[k1,k2−1], . . . , π[kr−1,kr−1] the F-runs of π. Define F-sort(π)
to be the permutation obtained by sorting the F-runs of π so that their minimal entries appear
in increasing order. Note that F-sort is the same as runsort when F is the family of increasing
permutations (consisting of one permutation of each length).

Figure 2. The scaled plots of Fddes-sort(π) (left) and Fval-sort(π) (right), where π
is a permutation chosen uniformly at random from S50000.

Suppose n is large. If we choose π ∈ Sn uniformly at random, then the minimal entries of the F-
runs of π should concentrate along a certain curve after we apply F-sort to π. It should be possible
to make this concentration statement precise using the ideas from Section 3; however, determining
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exactly what the curve is could be very difficult. Here, we simply provide some images illustrating
how this phenomenon might look in specific examples.

A double descent of a permutation π ∈ Sn is an index i ∈ {2, . . . , n − 1} such that πi−1 > πi >
πi+1. A valley of π is an index i ∈ {2, . . . , n − 1} such that πi−1 > πi < πi+1. Let Fddes be the
family of permutations with no double descents, and let Fval be the family of permutations with no
valleys. Figure 2 shows the scaled plots of Fddes-sort(π) and Fval-sort(π), where π is a permutation
chosen uniformly at random from S50000.

One possibility for future research is the characterization of the limiting behavior of F-sort(π)
(π ∈ Sn chosen uniformly at random) for various specific choices of F . Perhaps even more inter-
esting would be the determination of more general properties such as the existence of a limiting
permuton and conditions on F that guarantee some form of “horizontal uniformity.” One could also
consider the limiting behavior of runsort(π) when π ∈ Sn is chosen non-uniformly, e.g., according
to the Mallows distribution.
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[7] J. Borga, M. Bouvel, V. Féray, and B. Stufler, A decorated tree approach to random permutations in substitution-

closed classes. Electron. J. Probab., 25 (2020), 1–52.
[8] J. Borga and M. Maazoun, Scaling and local limits of Baxter permutations and bipolar orientations through

coalescent-walk processes. Preprint arXiv:2008.09086 (2020).
[9] D. Callan, Pattern avoidance in “flattened” partitions. Discrete Math., 309 (2009), 4187–4191.

[10] D. Dauvergne, The Archimedean limit of random sorting networks. Preprint arXiv:1802.08934 (2018).
[11] D. Dauvergne and B. Virág, Circular support in random sorting networks. Trans. Amer. Math. Soc., 373 (2020),

1529–1553.
[12] T. Dokos and I. Pak, The expected shape of random doubly alternating Baxter permutations. Online J. Anal.

Comb., 9 (2014).
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