Country Portfolio Dynamics

Devereux and Sutherland

Presented by Judit Temesvary

April 22008

Outline of Presentation

(1) Introduction

Outline of Presentation

(1) Introduction
(2) General overview of methodology

Outline of Presentation

(1) Introduction
(2) General overview of methodology
(1) Solution method for the steady state portfolio

Outline of Presentation

(1) Introduction
(2) General overview of methodology
(1) Solution method for the steady state portfolio
(2) Solution method for time variation in equilibrium portfolio

Outline of Presentation

(1) Introduction
(2) General overview of methodology
(1) Solution method for the steady state portfolio
(2) Solution method for time variation in equilibrium portfolio
(3) Application

Outline of Presentation

(1) Introduction
(2) General overview of methodology
(1) Solution method for the steady state portfolio
(2) Solution method for time variation in equilibrium portfolio
(3) Application
(1) Steady state portfolio

Outline of Presentation

(1) Introduction
(2) General overview of methodology
(1) Solution method for the steady state portfolio
(2) Solution method for time variation in equilibrium portfolio
(3) Application
(1) Steady state portfolio
(2) Time variation in equilibrium portfolio

Outline of Presentation

(1) Introduction
(2) General overview of methodology
(1) Solution method for the steady state portfolio
(2) Solution method for time variation in equilibrium portfolio
(3) Application
(1) Steady state portfolio
(2) Time variation in equilibrium portfolio
(1) Conclusion

Introduction

- Current paper builds on Devereux and Sutherland (2006): "Solving for Country Portfolios in Open Economy Macro Models"

Introduction

- Current paper builds on Devereux and Sutherland (2006): "Solving for Country Portfolios in Open Economy Macro Models"
- Background paper shows how to derive equilibrium portfolios for open economy dynamic general equilibrium models

Introduction

- Current paper builds on Devereux and Sutherland (2006): "Solving for Country Portfolios in Open Economy Macro Models"
- Background paper shows how to derive equilibrium portfolios for open economy dynamic general equilibrium models
- As an extension, this paper shows how to derive the dynamic behavior of portfolios around equilibrium

Introduction

- Current paper builds on Devereux and Sutherland (2006): "Solving for Country Portfolios in Open Economy Macro Models"
- Background paper shows how to derive equilibrium portfolios for open economy dynamic general equilibrium models
- As an extension, this paper shows how to derive the dynamic behavior of portfolios around equilibrium
- Method is easy to implement and gives analytical solutions for the first-order behavior of portfolios around steady state

Introduction

- Current paper builds on Devereux and Sutherland (2006): "Solving for Country Portfolios in Open Economy Macro Models"
- Background paper shows how to derive equilibrium portfolios for open economy dynamic general equilibrium models
- As an extension, this paper shows how to derive the dynamic behavior of portfolios around equilibrium
- Method is easy to implement and gives analytical solutions for the first-order behavior of portfolios around steady state
- In most cases, method generates analytical results

Introduction

- Current paper builds on Devereux and Sutherland (2006): "Solving for Country Portfolios in Open Economy Macro Models"
- Background paper shows how to derive equilibrium portfolios for open economy dynamic general equilibrium models
- As an extension, this paper shows how to derive the dynamic behavior of portfolios around equilibrium
- Method is easy to implement and gives analytical solutions for the first-order behavior of portfolios around steady state
- In most cases, method generates analytical results
- In more complex cases, it can be used to generate numerical results

Introduction

- Current paper builds on Devereux and Sutherland (2006): "Solving for Country Portfolios in Open Economy Macro Models"
- Background paper shows how to derive equilibrium portfolios for open economy dynamic general equilibrium models
- As an extension, this paper shows how to derive the dynamic behavior of portfolios around equilibrium
- Method is easy to implement and gives analytical solutions for the first-order behavior of portfolios around steady state
- In most cases, method generates analytical results
- In more complex cases, it can be used to generate numerical results
- Useful in studying the response of portfolio allocations to business cycles

Introduction continued

- Paper presents approximation method for computing

Introduction continued

- Paper presents approximation method for computing
- Equilibrium financial portfolios in stochastic open economy macro models

Introduction continued

- Paper presents approximation method for computing
- Equilibrium financial portfolios in stochastic open economy macro models
- Time variation in these portfolios around equilibrium

Introduction continued

- Paper presents approximation method for computing
- Equilibrium financial portfolios in stochastic open economy macro models
- Time variation in these portfolios around equilibrium
- Provides analytical solutions for optimal gross portfolio positions in any types of assets

Introduction continued

- Paper presents approximation method for computing
- Equilibrium financial portfolios in stochastic open economy macro models
- Time variation in these portfolios around equilibrium
- Provides analytical solutions for optimal gross portfolio positions in any types of assets
- Contribution: provides a model to analyze incomplete markets with multiple assets

Introduction continued

- Paper presents approximation method for computing
- Equilibrium financial portfolios in stochastic open economy macro models
- Time variation in these portfolios around equilibrium
- Provides analytical solutions for optimal gross portfolio positions in any types of assets
- Contribution: provides a model to analyze incomplete markets with multiple assets
- Complication: impossible to use first order approximation methods in incomplete market models for two reasons:

Introduction continued

- Paper presents approximation method for computing
- Equilibrium financial portfolios in stochastic open economy macro models
- Time variation in these portfolios around equilibrium
- Provides analytical solutions for optimal gross portfolio positions in any types of assets
- Contribution: provides a model to analyze incomplete markets with multiple assets
- Complication: impossible to use first order approximation methods in incomplete market models for two reasons:
- Optimal portfolio allocation is indeterminate in first order approximation

Introduction continued

- Paper presents approximation method for computing
- Equilibrium financial portfolios in stochastic open economy macro models
- Time variation in these portfolios around equilibrium
- Provides analytical solutions for optimal gross portfolio positions in any types of assets
- Contribution: provides a model to analyze incomplete markets with multiple assets
- Complication: impossible to use first order approximation methods in incomplete market models for two reasons:
- Optimal portfolio allocation is indeterminate in first order approximation
- Optimal portfolio allocation is indeterminate in non-stochastic steady state

Introduction continued

- Paper presents approximation method for computing
- Equilibrium financial portfolios in stochastic open economy macro models
- Time variation in these portfolios around equilibrium
- Provides analytical solutions for optimal gross portfolio positions in any types of assets
- Contribution: provides a model to analyze incomplete markets with multiple assets
- Complication: impossible to use first order approximation methods in incomplete market models for two reasons:
- Optimal portfolio allocation is indeterminate in first order approximation
- Optimal portfolio allocation is indeterminate in non-stochastic steady state
- Solution to first problem: use second-order approximations

Introduction continued

- Paper presents approximation method for computing
- Equilibrium financial portfolios in stochastic open economy macro models
- Time variation in these portfolios around equilibrium
- Provides analytical solutions for optimal gross portfolio positions in any types of assets
- Contribution: provides a model to analyze incomplete markets with multiple assets
- Complication: impossible to use first order approximation methods in incomplete market models for two reasons:
- Optimal portfolio allocation is indeterminate in first order approximation
- Optimal portfolio allocation is indeterminate in non-stochastic steady state
- Solution to first problem: use second-order approximations
- Solution to second problem: portfolio equilibrium endogenously determined so as to satisfy second order approximations of EOCs

General Overview of Methodology

- Portfolio holdings

$$
\begin{aligned}
\alpha\left(Z_{t}\right) & \simeq \alpha(\bar{Z})+\frac{\partial \alpha}{\partial Z}\left(Z_{t}-\bar{Z}\right) \\
& \simeq \bar{\alpha}+\underbrace{\hat{\alpha}_{t}}_{=\gamma \hat{z}_{t}}
\end{aligned}
$$

- Samuelson (1970): to solve for portfolio holdings up to order N approximate the portfolio problem up to order $\mathrm{N}+2$
- Expected excess returns

$$
E_{t}\left[r_{x t+1}\right]=E_{t}\left[r_{1+1}-r_{2 t+1}\right] \simeq \underbrace{\bar{r}_{x}^{e}}_{=0}+\underbrace{\hat{r}_{x}^{e(1)}}_{=0}+\underbrace{\hat{r}_{x}^{e(2)}}_{\text {constant }}+\underbrace{\delta_{n} \hat{\lambda}_{t}}_{=\delta}
$$

- Once portfolio problem is solved the first-order behaviour of all other variables can be solved in the usual way - including the first-order behaviour of realised asset prices and returns

Solution Method for Equilibrium Portfolio

(1) Separate variables into portfolio and non-portfolio variables

Solution Method for Equilibrium Portfolio

(1) Separate variables into portfolio and non-portfolio variables
(2) Take first order optimality conditions with respect to portfolio choice

Solution Method for Equilibrium Portfolio

(1) Separate variables into portfolio and non-portfolio variables
(2) Take first order optimality conditions with respect to portfolio choice
(3) Take a second order Taylor series approximation of the FOCs around non-stochastic SS - only depends on first-order non-portfolio variables

Solution Method for Equilibrium Portfolio

(1) Separate variables into portfolio and non-portfolio variables
(2) Take first order optimality conditions with respect to portfolio choice
(3) Take a second order Taylor series approximation of the FOCs around non-stochastic SS - only depends on first-order non-portfolio variables
(9) Write first-order approximation of non-portfolio variables as function of endogeneous portfolio eqm.

Solution Method for Equilibrium Portfolio

(1) Separate variables into portfolio and non-portfolio variables
(2) Take first order optimality conditions with respect to portfolio choice
(3) Take a second order Taylor series approximation of the FOCs around non-stochastic SS - only depends on first-order non-portfolio variables
(9) Write first-order approximation of non-portfolio variables as function of endogeneous portfolio eqm.
(3) Use (4) to write (3) as function of eqm. portfolio and exogenous innovations only

Solution Method for Equilibrium Portfolio

(1) Separate variables into portfolio and non-portfolio variables
(2) Take first order optimality conditions with respect to portfolio choice
(3) Take a second order Taylor series approximation of the FOCs around non-stochastic SS - only depends on first-order non-portfolio variables
(9) Write first-order approximation of non-portfolio variables as function of endogeneous portfolio eqm.
(6) Use (4) to write (3) as function of eqm. portfolio and exogenous innovations only
(0) Solve (5) for eqm. portfolio

Solution Method for Time Variation in Equilibrium Portfolio

(1) Builds on previous slide: do everything above, plus:

Solution Method for Time Variation in Equilibrium Portfolio

(1) Builds on previous slide: do everything above, plus:
(2) Take a third order Taylor series approximation of the FOCs around non-stochastic SS - depends on first and second order non-portfolio variables

Solution Method for Time Variation in Equilibrium Portfolio

(1) Builds on previous slide: do everything above, plus:
(2) Take a third order Taylor series approximation of the FOCs around non-stochastic SS - depends on first and second order non-portfolio variables
(3) Postulate that time variation in eqm. portfolio is a linear function of state variables - look for vector of coefficients on state variables

Solution Method for Time Variation in Equilibrium Portfolio

(1) Builds on previous slide: do everything above, plus:
(2) Take a third order Taylor series approximation of the FOCs around non-stochastic SS - depends on first and second order non-portfolio variables
(3) Postulate that time variation in eqm. portfolio is a linear function of state variables - look for vector of coefficients on state variables
(9) Write second-order approximation of non-portfolio variables as function of endogeneous portfolio eqm.

Solution Method for Time Variation in Equilibrium Portfolio

(1) Builds on previous slide: do everything above, plus:
(2) Take a third order Taylor series approximation of the FOCs around non-stochastic SS - depends on first and second order non-portfolio variables
(3) Postulate that time variation in eqm. portfolio is a linear function of state variables - look for vector of coefficients on state variables
(9) Write second-order approximation of non-portfolio variables as function of endogeneous portfolio eqm.
(3) Use (4) to write (2) as function of time variation in eqm. portfolio and exogenous innovations only

Solution Method for Time Variation in Equilibrium Portfolio

(1) Builds on previous slide: do everything above, plus:
(2) Take a third order Taylor series approximation of the FOCs around non-stochastic SS - depends on first and second order non-portfolio variables
(3) Postulate that time variation in eqm. portfolio is a linear function of state variables - look for vector of coefficients on state variables
(9) Write second-order approximation of non-portfolio variables as function of endogeneous portfolio eqm.
(0) Use (4) to write (2) as function of time variation in eqm. portfolio and exogenous innovations only
(0) Solve (5) for vector of coefficients for time variation in eqm. portfolio

Application

- Two countries and two (internationally traded) assets
- Home country produces good Y_{H} with price P_{H}
- Foreign country produces good Y_{F} with price P_{F}^{*}
- Home country agent preferences:

$$
U_{t}=E_{t} \sum_{\tau=t}^{\infty} \beta^{\tau-t}\left[u\left(C_{\tau}\right)+v(.)\right]
$$

- C is a composite of home and foreign goods
- $v(\cdot)$ captures parts not relevant to the portfolio problem
- P : consumer price index for home agents

Assets

- Two assets and vector of two returns (from $\mathrm{t}-1$ to t):

Assets

- Two assets and vector of two returns (from $t-1$ to t):
- $\quad r_{t}^{\prime}=\left[\begin{array}{ll}r_{1, t} & r_{2, t}\end{array}\right]$

Assets

- Two assets and vector of two returns (from $t-1$ to t):
- $\quad r_{t}^{\prime}=\left[\begin{array}{ll}r_{1, t} & r_{2, t}\end{array}\right]$
- Asset payoffs and prices measured in terms ot C

Assets

- Two assets and vector of two returns (from $t-1$ to t):
- $\quad r_{t}^{\prime}=\left[\begin{array}{ll}r_{1, t} & r_{2, t}\end{array}\right]$
- Asset payoffs and prices measured in terms ot C
- Budget constraint for home agents:

Assets

- Two assets and vector of two returns (from $t-1$ to t):
- $\quad r_{t}^{\prime}=\left[\begin{array}{ll}r_{1, t} & r_{2, t}\end{array}\right]$
- Asset payoffs and prices measured in terms ot C
- Budget constraint for home agents:

$$
W_{t}=\alpha_{1, t-1} r_{1, t}+\alpha_{2, t-1} r_{2, t}+Y_{t}-C_{t}
$$

Assets

- Two assets and vector of two returns (from $t-1$ to t):
- $\quad r_{t}^{\prime}=\left[\begin{array}{ll}r_{1, t} & r_{2, t}\end{array}\right]$
- Asset payoffs and prices measured in terms ot C
- Budget constraint for home agents:

$$
W_{t}=\alpha_{1, t-1} r_{1, t}+\alpha_{2, t-1} r_{2, t}+Y_{t}-C_{t}
$$

- Then we have:

Assets

- Two assets and vector of two returns (from t-1 to t):
- $\quad r_{t}^{\prime}=\left[\begin{array}{ll}r_{1, t} & r_{2, t}\end{array}\right]$
- Asset payoffs and prices measured in terms ot C
- Budget constraint for home agents:

$$
W_{t}=\alpha_{1, t-1} r_{1, t}+\alpha_{2, t-1} r_{2, t}+Y_{t}-C_{t}
$$

- Then we have:
- $\alpha_{1, t-1}+\alpha_{2, t-1}=W_{t-1}$
- Rewrite budget constraint in terms of excess returns on assets for home agents:
- Rewrite budget constraint in terms of excess returns on assets for home agents:
- $W_{t}=\alpha_{1, t-1} r_{x, t}+r_{2, t} W_{t-1}+Y_{t}-C_{t}$
- Rewrite budget constraint in terms of excess returns on assets for home agents:
- $W_{t}=\alpha_{1, t-1} r_{x, t}+r_{2, t} W_{t-1}+Y_{t}-C_{t}$
- For foreign agents:
- Rewrite budget constraint in terms of excess returns on assets for home agents:
- $W_{t}=\alpha_{1, t-1} r_{x, t}+r_{2, t} W_{t-1}+Y_{t}-C_{t}$
- For foreign agents:
- $W_{t}^{*}=\alpha_{1, t-1}^{*} r_{x, t}+r_{2, t} W_{t-1}^{*}+Y_{t}^{*}-C_{t}^{*}$
- Rewrite budget constraint in terms of excess returns on assets for home agents:
- $W_{t}=\alpha_{1, t-1} r_{x, t}+r_{2, t} W_{t-1}+Y_{t}-C_{t}$
- For foreign agents:
- $W_{t}^{*}=\alpha_{1, t-1}^{*} r_{x, t}+r_{2, t} W_{t-1}^{*}+Y_{t}^{*}-C_{t}^{*}$
- Excess returns:
- Rewrite budget constraint in terms of excess returns on assets for home agents:
- $W_{t}=\alpha_{1, t-1} r_{x, t}+r_{2, t} W_{t-1}+Y_{t}-C_{t}$
- For foreign agents:
- $W_{t}^{*}=\alpha_{1, t-1}^{*} r_{x, t}+r_{2, t} W_{t-1}^{*}+Y_{t}^{*}-C_{t}^{*}$
- Excess returns:

$$
r_{x, t}=r_{1, t}-r_{2, t}
$$

- Rewrite budget constraint in terms of excess returns on assets for home agents:
- $W_{t}=\alpha_{1, t-1} r_{x, t}+r_{2, t} W_{t-1}+Y_{t}-C_{t}$
- For foreign agents:
- $W_{t}^{*}=\alpha_{1, t-1}^{*} r_{x, t}+r_{2, t} W_{t-1}^{*}+Y_{t}^{*}-C_{t}^{*}$
- Excess returns:

$$
r_{x, t}=r_{1, t}-r_{2, t}
$$

- At end of each period, agents select portfolio holding to carry into next period

Portfolio First Order Conditions

For domestic agents:

$$
E_{t}\left[u^{\prime}\left(C_{t+1}\right) r_{1, t+1}\right]=E_{t}\left[u^{\prime}\left(C_{t+1}\right) r_{2, t+1}\right]
$$

For foreign agents:

$$
E_{t}\left[u^{\prime}\left(C_{t+1}^{*}\right) r_{1, t+1}\right]=E_{t}\left[u^{\prime}\left(C_{t+1}^{*}\right) r_{2, t+1}\right]
$$

From now, let: $\alpha_{t}=\alpha_{1, t}$ and $\alpha_{2, t}=W_{t}-\alpha_{t}$
Ignore non-portfolio equations for home and foreign agents

- Approximate around \bar{X} (non-portfolio variables $\bar{C}, \bar{r}_{x}, \bar{Y}, \bar{W}$) and $\bar{\alpha}$ (portfolio holdings)
- Approximate around \bar{X} (non-portfolio variables $\bar{C}, \bar{r}_{x}, \bar{Y}, \bar{W}$) and $\bar{\alpha}$ (portfolio holdings)
- \bar{X} determined by symmetric non-stochastic steady state
- Approximate around \bar{X} (non-portfolio variables $\bar{C}, \bar{r}_{x}, \bar{Y}, \bar{W}$) and $\bar{\alpha}$ (portfolio holdings)
- \bar{X} determined by symmetric non-stochastic steady state

$$
\begin{array}{cc}
\bar{W}=0, \bar{Y}=\bar{C} & \bar{r}_{x}=0 \\
\bar{r}_{1}=\bar{r}_{2}=1 / \beta & \bar{\alpha}_{2}=-\bar{\alpha}_{1}=\bar{\alpha}
\end{array}
$$

- Approximate around \bar{X} (non-portfolio variables $\bar{C}, \bar{r}_{x}, \bar{Y}, \bar{W}$) and $\bar{\alpha}$ (portfolio holdings)
- \bar{X} determined by symmetric non-stochastic steady state

$$
\begin{gathered}
\bar{W}=0, \bar{Y}=\bar{C} \\
\bar{r}_{x}=0 \\
\bar{\alpha}_{1}=\bar{r}_{2}=1 / \beta=-\bar{\alpha}_{1}=\bar{\alpha}
\end{gathered}
$$

- $\bar{\alpha}$ determined endogenously - point such that second-order approximations of the FOCs are satisfied around \bar{X} and $\bar{\alpha}$

Finding the Portfolio Approximation Point

- Second-order approximation of the home-country FOC:

$$
E_{t}\left[\hat{r}_{x, t+1}+\frac{1}{2}\left(\hat{r}_{1, t+1}^{2}-\hat{r}_{2, t+1}^{2}\right)-\rho \hat{C}_{t+1} \hat{r}_{x, t+1}\right]=O\left(\epsilon_{A P P R}^{3}\right)
$$

- Second-order approximation of the foreign-country FOC:
$E_{t}\left[\hat{r}_{x, t+1}+\frac{1}{2}\left(\hat{r}_{1, t+1}^{2}-\hat{r}_{2, t+1}^{2}\right)-\rho \hat{C}_{t+1}^{*} \hat{r}_{x, t+1}\right]=O\left(\epsilon_{A P P R}^{3}\right)$

Equilibrium conditions

- Combining the above, we get:

Equilibrium conditions

- Combining the above, we get:
- Equation for equilibrium portfolio holdings:

Equilibrium conditions

- Combining the above, we get:
- Equation for equilibrium portfolio holdings:
- $E_{t}\left[\left(\hat{C}_{t+1}-\hat{C}_{t+1}^{*}\right) \hat{r}_{x, t+1}\right]=0+O\left(\epsilon_{A P P R}^{3}\right)$ (1)

Equilibrium conditions

- Combining the above, we get:
- Equation for equilibrium portfolio holdings:
- $E_{t}\left[\left(\hat{C}_{t+1}-\hat{C}_{t+1}^{*}\right) \hat{r}_{x, t+1}\right]=0+O\left(\epsilon_{A P P R}^{3}\right)$ (1)
- Exuilibrium expected excess returns:

Equilibrium conditions

- Combining the above, we get:
- Equation for equilibrium portfolio holdings:
- $E_{t}\left[\left(\hat{C}_{t+1}-\hat{C}_{t+1}^{*}\right) \hat{r}_{x, t+1}\right]=0+O\left(\epsilon_{A P P R}^{3}\right)$
- Exuilibrium expected excess returns:
$E\left[\hat{r}_{x}\right]=-\frac{1}{2} E\left[\hat{r}_{1, t+1}^{2}-\hat{r}_{2, t+1}^{2}\right]$
$+\rho \frac{1}{2} E_{t}\left[\left(\hat{C}_{t+1}-\hat{C}_{t+1}^{*}\right) \hat{r}_{x, t+1}\right]+O\left(\epsilon_{A P P R}^{3}\right)$

Equilibrium conditions

- Combining the above, we get:
- Equation for equilibrium portfolio holdings:
- $E_{t}\left[\left(\hat{C}_{t+1}-\hat{C}_{t+1}^{*}\right) \hat{r}_{x, t+1}\right]=0+O\left(\epsilon_{A P P R}^{3}\right)$
- Exuilibrium expected excess returns:
$E\left[\hat{r}_{x}\right]=-\frac{1}{2} E\left[\hat{r}_{1, t+1}^{2}-\hat{r}_{2, t+1}^{2}\right]$
$+\rho \frac{1}{2} E_{t}\left[\left(\hat{C}_{t+1}-\hat{C}_{t+1}^{*}\right) \hat{r}_{x, t+1}\right]+O\left(\epsilon_{A P P R}^{3}\right)$
- Need to find $\bar{\alpha}$ such that (1) holds

Useful Results

- Devereux and Sutherland (2006) show that three results hold:

Useful Results

- Devereux and Sutherland (2006) show that three results hold:
- α enters the non-portfolio solutions only through the budget constraint

Useful Results

- Devereux and Sutherland (2006) show that three results hold:
- α enters the non-portfolio solutions only through the budget constraint
- Only $\bar{\alpha}$ enters the first-order approximation of the budget constraints

Useful Results

- Devereux and Sutherland (2006) show that three results hold:
- α enters the non-portfolio solutions only through the budget constraint
- Only $\bar{\alpha}$ enters the first-order approximation of the budget constraints
- The portfolio excess return $\bar{\alpha} \hat{r}_{x, t+1}$ is a zero mean iid. random variable, and $E\left(\hat{r}_{x}\right)=0$.

Portfolio Solution

- Let

$$
\tilde{\alpha} \equiv \bar{\alpha} /(\beta \bar{Y})
$$

Portfolio Solution

- Let

$$
\tilde{\alpha} \equiv \bar{\alpha} /(\beta \bar{Y})
$$

- Let $\xi_{t}=\tilde{\alpha} \hat{r}_{x, t+1}$, a zero mean iid. random variable

Portfolio Solution

- Let

$$
\tilde{\alpha} \equiv \bar{\alpha} /(\beta \bar{Y})
$$

- Let $\xi_{t}=\tilde{\alpha} \hat{r}_{x, t+1}$, a zero mean iid. random variable
- Using this in the home budget constraint approximation:

Portfolio Solution

- Let

$$
\tilde{\alpha} \equiv \bar{\alpha} /(\beta \bar{Y})
$$

- Let $\xi_{t}=\tilde{\alpha} \hat{r}_{x, t+1}$, a zero mean iid. random variable
- Using this in the home budget constraint approximation:
- $\hat{W}_{t}=\frac{1}{\beta} \hat{W}_{t-1}+\hat{Y}_{t}-\hat{C}_{t}+\xi_{t}+O\left(\epsilon_{A P P R}^{2}\right)$

Non-portfolio part of model

- Summarize non-portfolio side of model as:

Non-portfolio part of model

- Summarize non-portfolio side of model as:
- $A_{1}\left[\begin{array}{c}s_{t+1} \\ E_{t}\left[c_{t+1}\right]\end{array}\right]=A_{2}\left[\begin{array}{c}s_{t} \\ c_{t}\end{array}\right]+A_{3} x_{t}+B \xi_{t}+O\left(\epsilon_{A P P R}^{2}\right)$

$$
x_{t}=N x_{t-1}+\varepsilon_{t}
$$

Non-portfolio part of model

- Summarize non-portfolio side of model as:
- $A_{1}\left[\begin{array}{c}s_{t+1} \\ E_{t}\left[c_{t+1}\right]\end{array}\right]=A_{2}\left[\begin{array}{c}s_{t} \\ c_{t}\end{array}\right]+A_{3} x_{t}+B \xi_{t}+O\left(\epsilon_{A P P R}^{2}\right)$

$$
x_{t}=N x_{t-1}+\varepsilon_{t}
$$

- s : vector of predetermined variables

Non-portfolio part of model

- Summarize non-portfolio side of model as:
- $A_{1}\left[\begin{array}{c}s_{t+1} \\ E_{t}\left[c_{t+1}\right]\end{array}\right]=A_{2}\left[\begin{array}{c}s_{t} \\ c_{t}\end{array}\right]+A_{3} x_{t}+B \xi_{t}+O\left(\epsilon_{A P P R}^{2}\right)$

$$
x_{t}=N x_{t-1}+\varepsilon_{t}
$$

- $\mathrm{s}:$ vector of predetermined variables
- c: vector of jump variables

Non-portfolio part of model

- Summarize non-portfolio side of model as:
- $A_{1}\left[\begin{array}{c}s_{t+1} \\ E_{t}\left[c_{t+1}\right]\end{array}\right]=A_{2}\left[\begin{array}{c}s_{t} \\ c_{t}\end{array}\right]+A_{3} x_{t}+B \xi_{t}+O\left(\epsilon_{A P P R}^{2}\right)$

$$
x_{t}=N x_{t-1}+\varepsilon_{t}
$$

- $\mathrm{s}:$ vector of predetermined variables
- c: vector of jump variables
- x: vector of exogenous forcing processes

Non-portfolio part of model

- Summarize non-portfolio side of model as:
- $A_{1}\left[\begin{array}{c}s_{t+1} \\ E_{t}\left[c_{t+1}\right]\end{array}\right]=A_{2}\left[\begin{array}{c}s_{t} \\ c_{t}\end{array}\right]+A_{3} x_{t}+B \xi_{t}+O\left(\epsilon_{A P P R}^{2}\right)$

$$
x_{t}=N x_{t-1}+\varepsilon_{t}
$$

- $\mathrm{s}:$ vector of predetermined variables
- c: vector of jump variables
- x: vector of exogenous forcing processes
- ε : vector of iid. shocks

The Solution

- The state-space solution then becomes:

The Solution

- The state-space solution then becomes:
- $s_{t+1}=F_{1} x_{t}+F_{2} s_{t}+F_{3} \xi_{t}+O\left(\epsilon_{A P P R}^{2}\right)$ $c_{t}=P_{1} x_{t}+P_{2} s_{t}+P_{3} \xi_{t}+O\left(\epsilon_{A P P R}^{2}\right)$

The Solution

- The state-space solution then becomes:
- $s_{t+1}=F_{1} x_{t}+F_{2} s_{t}+F_{3} \xi_{t}+O\left(\epsilon_{A P P R}^{2}\right)$

$$
c_{t}=P_{1} x_{t}+P_{2} s_{t}+P_{3} \xi_{t}+O\left(\epsilon_{A P P R}^{2}\right)
$$

- We can use these equations to express the LHS terms of (1) in terms of ξ and exogenous terms

Exressing the LHS terms

- From state-space solution, we can extract the two terms on the LHS of (1):

Exressing the LHS terms

- From state-space solution, we can extract the two terms on the LHS of (1):
- $\hat{r}_{x, t+1}=\left[R_{1}\right] \xi_{t+1}+\left[R_{2}\right]_{i}\left[\varepsilon_{t+1}\right]^{i}+O\left(\epsilon_{A P P R}^{2}\right)$

Exressing the LHS terms

- From state-space solution, we can extract the two terms on the LHS of (1):
- $\hat{r}_{x, t+1}=\left[R_{1}\right] \xi_{t+1}+\left[R_{2}\right]_{i}\left[\varepsilon_{t+1}\right]^{i}+O\left(\epsilon_{A P P R}^{2}\right)$

$$
\left(\hat{C}_{t+1}-\hat{C}_{t+1}^{*}\right)=\left[D_{1}\right] \xi_{t+1}+\left[D_{2}\right]_{i}\left[\varepsilon_{t+1}\right]^{i}+\left[D_{3}\right]_{k}\left[z_{t+1}\right]^{k}+O\left(\epsilon_{A P P R}^{2}\right)
$$

Exressing the LHS terms

- From state-space solution, we can extract the two terms on the LHS of (1):
- $\hat{r}_{x, t+1}=\left[R_{1}\right] \xi_{t+1}+\left[R_{2}\right]_{i}\left[\varepsilon_{t+1}\right]^{i}+O\left(\epsilon_{A P P R}^{2}\right)$

$$
\left(\hat{C}_{t+1}-\hat{C}_{t+1}^{*}\right)=\left[D_{1}\right] \xi_{t+1}+\left[D_{2}\right]_{i}\left[\varepsilon_{t+1}\right]^{i}+\left[D_{3}\right]_{k}\left[z_{t+1}\right]^{k}+O\left(\epsilon_{A P P R}^{2}\right)
$$

- where the vector of state variables:

$$
z_{t+1}^{\prime}=\left[\begin{array}{ll}
x_{t} & s_{t+1}
\end{array}\right]
$$

Expressing the LHS terms

- Using the fact that

$$
\xi_{t+1}=\tilde{\alpha} \hat{r}_{x, t+1}
$$

we get the reduced form equations:

$$
\begin{aligned}
& \hat{r}_{x, t+1}=\left[\tilde{R}_{2}\right]_{i}\left[\varepsilon_{t+1}\right]^{i}+O\left(\epsilon_{A P P R}^{2}\right) \\
& \left(\hat{C}_{t+1}-\hat{C}_{t+1}^{*}\right)=\left[\tilde{D}_{2}\right]_{i}\left[\varepsilon_{t+1}\right]^{i}+\left[D_{3}\right]_{k}\left[z_{t+1}\right]^{k}+O\left(\epsilon_{A P P R}^{2}\right)
\end{aligned}
$$

...where the matrices are:

$$
\begin{aligned}
{\left[\tilde{R}_{2}\right]_{i} } & =\frac{1}{1-\left[R_{1}\right] \tilde{\alpha}}\left[R_{2}\right]_{i} \\
{\left[\tilde{D}_{2}\right]_{i} } & =\left(\frac{\left[D_{1}\right] \tilde{\alpha}}{1-\left[R_{1}\right] \tilde{\alpha}}\left[R_{2}\right]_{i}+\left[D_{2}\right]_{i}\right)
\end{aligned}
$$

- Now we can evaluate the LHS of (1)!!!

Solving for the portfolio approximation point

- Combining the above terms, we can rewrite and simplify (1) as:

$$
\left[\tilde{D}_{2 i}\right]_{i}\left[\tilde{R}_{2}\right]_{j}[\Sigma]^{i, j}=0
$$

Solving for the portfolio approximation point

- Combining the above terms, we can rewrite and simplify (1) as:

$$
\left[\tilde{D}_{2] i}\left[\tilde{R}_{2}\right]_{j}[\Sigma]^{i, j}=0\right.
$$

- Solving for the corresponding equilibrium portfolio:

$$
\tilde{\alpha}=\frac{\left[D_{2}\right]_{i}\left[R_{2}\right]_{j}[\Sigma]^{i, j}}{\left(\left[R_{1}\right]\left[D_{2}\right]_{i}\left[R_{2}\right]_{j}-\left[D_{1}\right]\left[R_{2}\right]_{i}\left[R_{2}\right]_{j}\right)[\Sigma]^{i, j}}
$$

Time variation in equilibrium portfolios

- The above solution is non time-varying: now want to analyze portfolio behavior around equilibrium

Time variation in equilibrium portfolios

- The above solution is non time-varying: now want to analyze portfolio behavior around equilibrium
- State variables change over time: portfolio choice problem is different in every period

Time variation in equilibrium portfolios

- The above solution is non time-varying: now want to analyze portfolio behavior around equilibrium
- State variables change over time: portfolio choice problem is different in every period
- α_{t} generally varies around $\bar{\alpha}$

Time variation in equilibrium portfolios

- The above solution is non time-varying: now want to analyze portfolio behavior around equilibrium
- State variables change over time: portfolio choice problem is different in every period
- α_{t} generally varies around $\bar{\alpha}$
- We want to know how risk characteristics are affected by evolution of state variables

Time variation in equilibrium portfolios

- The above solution is non time-varying: now want to analyze portfolio behavior around equilibrium
- State variables change over time: portfolio choice problem is different in every period
- α_{t} generally varies around $\bar{\alpha}$
- We want to know how risk characteristics are affected by evolution of state variables
- Must know first-order effect of state variables on second moments of portfolio choice

Time variation in equilibrium portfolios

- The above solution is non time-varying: now want to analyze portfolio behavior around equilibrium
- State variables change over time: portfolio choice problem is different in every period
- α_{t} generally varies around $\bar{\alpha}$
- We want to know how risk characteristics are affected by evolution of state variables
- Must know first-order effect of state variables on second moments of portfolio choice
- We need a third-order approximation of portfolio problem

Third-order Approximation

- Combining third-order approximations of home and foreign protfolio choice FOCs yields:

$$
\begin{align*}
& E_{t}\left[\begin{array}{c}
-\rho\left(\hat{C}_{t+1}-\hat{C}_{t+1}^{*}\right) \hat{r}_{x, t+1} \\
+\frac{\rho^{2}}{2}\left(\hat{C}_{t+1}^{2}-\hat{C}_{t+1}^{2 *}\right) \hat{r}_{x, t+1} \\
-\frac{\rho}{2}\left(\hat{C}_{t+1}-\hat{C}_{t+1}^{*}\right)\left(\hat{r}_{1, t+1}^{2}-\hat{r}_{2, t+1}^{2}\right)
\end{array}\right]=O\left(\epsilon_{A P P R}^{4}\right) \tag{3}\\
& E_{t}\left[\hat{r}_{x, t+1}\right]=E_{t}\left[\begin{array}{c}
-\frac{1}{2}\left(\hat{r}_{1, t+1}^{2}-\hat{r}_{2, t+1}^{2}\right) \\
-\frac{1}{6}\left(\hat{r}_{1, t+1}^{3}-\hat{r}_{2, t+1}^{3}\right) \\
+\rho\left(\hat{C}_{t+1}+\hat{C}_{t+1}^{*}\right) \hat{r}_{x, t+1} \\
-\frac{\rho^{2}}{2}\left(\hat{C}_{t+1}^{2}+\hat{C}_{t+1}^{2 *}\right) \hat{r}_{x, t+1} \\
+\frac{\rho}{2}\left(\hat{C}_{t+1}+\hat{C}_{t+1}^{*}\right)\left(\hat{r}_{1, t+1}^{2}-\hat{r}_{2, t+1}^{2}\right)
\end{array}\right]+O\left(\epsilon_{A P P R}^{4}\right)
\end{align*}
$$

Third-order Approximation

- Combining third-order approximations of home and foreign protfolio choice FOCs yields:

$$
\begin{align*}
& E_{t}\left[\begin{array}{c}
-\rho\left(\hat{C}_{t+1}-\hat{C}_{t+1}^{*}\right) \hat{r}_{x, t+1} \\
+\frac{\rho^{2}}{2}\left(\hat{C}_{t+1}^{2}-\hat{C}_{t+1}^{2 *}\right) \hat{r}_{x, t+1} \\
-\frac{\rho}{2}\left(\hat{C}_{t+1}-\hat{C}_{t+1}^{*}\right)\left(\hat{r}_{1, t+1}^{2}-\hat{r}_{2, t+1}^{2}\right)
\end{array}\right]=O\left(\epsilon_{A P P R}^{4}\right) \tag{3}\\
& E_{t}\left[\hat{r}_{x, t+1}\right]=E_{t}\left[\begin{array}{c}
-\frac{1}{2}\left(\hat{r}_{1, t+1}^{2}-\hat{r}_{2, t+1}^{2}\right) \\
-\frac{1}{6}\left(\hat{r}_{1, t+1}^{3}-\hat{r}_{2, t+1}^{3}\right) \\
+\rho\left(\hat{C}_{t+1}+\hat{C}_{t+1}^{*}\right) \hat{r}_{x, t+1} \\
-\frac{\rho^{2}}{2}\left(\hat{C}_{t+1}^{2}+\hat{C}_{t+1}^{2 *}\right) \hat{r}_{x, t+1} \\
+\frac{\rho}{2}\left(\hat{C}_{t+1}+\hat{C}_{t+1}^{*}\right)\left(\hat{r}_{1, t+1}^{2}-\hat{r}_{2, t+1}^{2}\right)
\end{array}\right]+O\left(\epsilon_{A P P R}^{4}\right)
\end{align*}
$$

- These are the third-order equivalents of (1) and (2)

The Portfolio Solution

- GOAL: find the time variation in portfolio decisions $\hat{\alpha}_{t}$ such that (3) holds

The Portfolio Solution

- GOAL: find the time variation in portfolio decisions $\hat{\alpha}_{t}$ such that (3) holds
- Apply previous procedure at a higher order

The Portfolio Solution

- GOAL: find the time variation in portfolio decisions $\hat{\alpha}_{t}$ such that (3) holds
- Apply previous procedure at a higher order
- Find second-order approximation of budget constraint

The Portfolio Solution

- GOAL: find the time variation in portfolio decisions $\hat{\alpha}_{t}$ such that (3) holds
- Apply previous procedure at a higher order
- Find second-order approximation of budget constraint

$$
\begin{gathered}
\hat{W}_{t+1}=\frac{1}{\beta} \hat{W}_{t}+\hat{Y}_{t+1}-\hat{C}_{t+1}+\tilde{\alpha} \hat{r}_{x, t+1}+\frac{1}{2} \hat{Y}_{t+1}^{2} \\
-\frac{1}{2} \hat{C}_{t+1}^{2}+\frac{1}{2} \tilde{\alpha}\left(\hat{r}_{1, t+1}^{2}-\hat{r}_{2, t+1}^{2}\right)+\hat{\alpha}_{t} \hat{r}_{x, t+1}+\frac{1}{\beta} \hat{W}_{t} \hat{r}_{2, t}+O\left(\epsilon_{A P P R}^{3}\right)
\end{gathered}
$$

The Portfolio Solution

- GOAL: find the time variation in portfolio decisions $\hat{\alpha}_{t}$ such that (3) holds
- Apply previous procedure at a higher order
- Find second-order approximation of budget constraint

$$
\begin{gathered}
\hat{W}_{t+1}=\frac{1}{\beta} \hat{W}_{t}+\hat{Y}_{t+1}-\hat{C}_{t+1}+\tilde{\alpha} \hat{\gamma}_{x, t+1}+\frac{1}{2} \hat{Y}_{t+1}^{2} \\
-\frac{1}{2} \hat{C}_{t+1}^{2}+\frac{1}{2} \tilde{\alpha}\left(\hat{r}_{1, t+1}^{2}-\hat{r}_{2, t+1}^{2}\right)+\hat{\alpha}_{t} \hat{r}_{x, t+1}+\frac{1}{\beta} \hat{W}_{t} \hat{r}_{2, t}+O\left(\epsilon_{A P P R}^{3}\right)
\end{gathered}
$$

- where

$$
\hat{\alpha}_{t}=\frac{1}{\beta \bar{Y}}\left(\alpha_{t}-\bar{\alpha}\right)=\frac{\alpha_{t}}{\beta \bar{Y}}-\tilde{\alpha}
$$

Solving for time variation in portfolio decisions

- Postulate that $\hat{\alpha}_{t}$ is a linear function of the state variables of the model:

$$
\hat{\alpha}_{t}=\gamma^{\prime}\left[\begin{array}{c}
x_{t} \\
s_{t+1}
\end{array}\right]=\gamma^{\prime} z_{t+1}=[\gamma]_{k}\left[z_{t+1}\right]^{k}
$$

Solving for time variation in portfolio decisions

- Postulate that $\hat{\alpha}_{t}$ is a linear function of the state variables of the model:

$$
\hat{\alpha}_{t}=\gamma^{\prime}\left[\begin{array}{c}
x_{t} \\
s_{t+1}
\end{array}\right]=\gamma^{\prime} z_{t+1}=[\gamma]_{k}\left[z_{t+1}\right]^{k}
$$

- Now we need to find the vector of coefficients γ

Solving for time variation in portfolio decisions

- Postulate that $\hat{\alpha}_{t}$ is a linear function of the state variables of the model:

$$
\hat{\alpha}_{t}=\gamma^{\prime}\left[\begin{array}{c}
x_{t} \\
s_{t+1}
\end{array}\right]=\gamma^{\prime} z_{t+1}=[\gamma]_{k}\left[z_{t+1}\right]^{k}
$$

- Now we need to find the vector of coefficients γ
- Let $\xi_{t}=\hat{\alpha}_{t} \hat{r}_{x, t+1}$

Matrix representation of second-order non-portfolio part

$$
\begin{aligned}
& A_{1}\left[\begin{array}{c}
s_{t+1} \\
E_{t}\left(c_{t+1}\right)
\end{array}\right]= \tilde{A}_{2}\left[\begin{array}{c}
s_{t} \\
c_{t}
\end{array}\right]+\tilde{A}_{3} x_{t}+\tilde{A}_{4} \Lambda_{t}+B \xi_{t}+O\left(\epsilon_{\text {APPR }}^{3}\right) \\
& x_{t}=N x_{t-1}+\varepsilon_{t} \\
& \Lambda_{t}=\operatorname{vech}\left[\left[\begin{array}{l}
x_{t} \\
s_{t} \\
c_{t}
\end{array}\right]\left[\begin{array}{lll}
x_{t} & s_{t} & c_{t}
\end{array}\right]\right]
\end{aligned}
$$

Evaluating the LHS as before...

- Now extract equations from state-space solution and use result that excess return on portfolio time-variation $\xi_{t}=\hat{\alpha}_{t} \hat{r}_{x, t+1}$:

Evaluating the LHS as before...

- Now extract equations from state-space solution and use result that excess return on portfolio time-variation $\xi_{t}=\hat{\alpha}_{t} \hat{r}_{x, t+1}$:

$$
\begin{gather*}
\left(\hat{C}-\hat{C}^{*}\right)=\left[\tilde{D}_{0}\right]+\left[\tilde{D}_{2}\right]_{j}[\varepsilon]^{i}+\left[\tilde{D}_{3}\right]_{k}[z]^{k} \\
\bullet+\left[\tilde{D}_{4}\right]_{i, j}[\varepsilon]^{i}[\varepsilon]^{j}+\binom{\left[\tilde{D}_{5}\right]_{k^{\prime}}}{+\left[\tilde{D}_{1}\right]\left[\tilde{R}_{2}\right]_{i}[\gamma]_{k}}^{[\varepsilon]^{i}[z]^{k}} \tag{5}\\
+\left[\tilde{D}_{6}\right]_{i, j}[z]^{i}[z]^{j}+O\left(\epsilon_{A P P R}^{3}\right)
\end{gather*}
$$

Evaluating the LHS as before...

- Now extract equations from state-space solution and use result that excess return on portfolio time-variation $\xi_{t}=\hat{\alpha}_{t} \hat{r}_{x, t+1}$:

$$
\left.\begin{array}{c}
\left(\hat{C}-\hat{C}^{*}\right)=\left[\tilde{D}_{0}\right]+\left[\tilde{D}_{2}\right]_{j}[\varepsilon]^{i}+\left[\tilde{D}_{3}\right]_{k}[z]^{k} \\
\bullet+\left[\tilde{D}_{4}\right]_{i, j}[\varepsilon]^{i}[\varepsilon]^{j}+\binom{\left[\tilde{D}_{5}\right]_{k, i}}{\left.+\left[\tilde{D}_{1}\right]\left[\tilde{R}_{2}\right]_{i}[\gamma]_{k}\right)}[\varepsilon]^{i}[z]^{k} \\
+[5) \\
+\left[\tilde{D}_{6}\right]_{i, j}[z]^{i}[z]^{j}+O\left(\epsilon_{A P P R}^{3}\right)
\end{array} \hat{r}_{x}=E\left[\hat{r}_{x}\right]-\left[\tilde{R}_{4}\right]_{i, j}[\Sigma]^{i, j}+\left[\tilde{R}_{2}\right]_{i}[\varepsilon]^{i}+\left[\tilde{R}_{4}\right]_{i, j}[\varepsilon]^{i}[\varepsilon]^{j}\right)
$$

Evaluating the LHS

- From state-space representation, we can also extract these equations:

Evaluating the LHS

- From state-space representation, we can also extract these equations:

$$
\begin{align*}
\hat{C} & \left.=\left[\tilde{C}_{2}^{H}\right]_{i}[\varepsilon]\right]^{i}+\left[\tilde{C}_{3}^{H}\right]_{k}[z]^{k}+O\left(\epsilon_{A P P R}^{2}\right) \\
\hat{C}^{*} & =\left[\tilde{C}_{2}^{F}\right]_{i}[\varepsilon]^{i}+\left[\tilde{C}_{3}^{F}\right]_{k}[z]^{k}+O\left(\epsilon_{A P P R}^{2}\right) \tag{7}\\
\hat{r}_{1} & \left.=\left[\tilde{R}_{2}^{1}\right]_{i}[\varepsilon]\right]^{i}+\left[\tilde{R}_{3}^{1}\right]_{k}[z]^{k}+O\left(\epsilon_{A P P R}^{2}\right) \\
\hat{r}_{2} & =\left[\tilde{R}_{2}^{2}\right]_{i}[\varepsilon]^{i}+\left[\tilde{R}_{3}^{2}\right]_{k}[z]^{k}+O\left(\epsilon_{A P P R}^{2}\right)
\end{align*}
$$

Evaluating the LHS

- Combining (5), (6) and (7) and simplifying, we can rewrite and simplify (3) as:

Evaluating the LHS

- Combining (5), (6) and (7) and simplifying, we can rewrite and simplify (3) as:

$$
\begin{aligned}
& {\left[\tilde{R}_{2}\right]_{i}\left(\left[\tilde{D}_{5}\right]_{k, j}+\left[\tilde{D}_{1}\right]\left[\tilde{R}_{2}\right]_{j}[\gamma]_{k}\right)[\Sigma]^{i, j}} \\
& \quad+\left[\tilde{D}_{2}\right]_{i}\left[\tilde{R}_{5}\right]_{k, j}[\Sigma]^{i, j}=O\left(\epsilon_{A P P R}^{3}\right)
\end{aligned}
$$

Evaluating the LHS

- Combining (5), (6) and (7) and simplifying, we can rewrite and simplify (3) as:

$$
\begin{aligned}
& {\left[\tilde{R}_{2}\right]_{i}\left(\left[\tilde{D}_{5}\right]_{k, j}+\left[\tilde{D}_{1}\right]\left[\tilde{R}_{2}\right]_{j}[\gamma]_{k}\right)[\Sigma]^{i, j}} \\
& \quad+\left[\tilde{D}_{2}\right]_{i}\left[\tilde{R}_{5}\right]_{k, j}[\Sigma]^{i, j}=O\left(\epsilon_{A P P R}^{3}\right)
\end{aligned}
$$

- Solving for the equilibrium coefficient vector γ :

Evaluating the LHS

- Combining (5), (6) and (7) and simplifying, we can rewrite and simplify (3) as:

$$
\begin{aligned}
& {\left[\tilde{R}_{2}\right]_{i}\left(\left[\tilde{D}_{5}\right]_{k, j}+\left[\tilde{D}_{1}\right]\left[\tilde{R}_{2}\right]_{j}[\gamma]_{k}\right)[\Sigma]^{i, j}} \\
& \quad+\left[\tilde{D}_{2}\right]_{i}\left[\tilde{R}_{5}\right]_{k, j}[\Sigma]^{i, j}=O\left(\epsilon_{A P P R}^{3}\right)
\end{aligned}
$$

- Solving for the equilibrium coefficient vector γ :

$$
\begin{equation*}
\gamma_{k}=-\frac{\left(\left[\tilde{R}_{2}\right]_{i}\left[\tilde{D}_{5}\right]_{k, j}[\Sigma]^{i, j}+\left[\tilde{D}_{2}\right]_{i}\left[\tilde{R}_{5}\right]_{k, j}[\Sigma]^{i, j}\right)}{\left[\tilde{D}_{1}\right]\left[\tilde{R}_{2}\right]_{i}\left[\tilde{R}_{2}\right]_{j}[\Sigma]^{i, j}}+O\left(\epsilon_{A P P R}\right) \tag{8}
\end{equation*}
$$

Evaluating the LHS

- Combining (5), (6) and (7) and simplifying, we can rewrite and simplify (3) as:

$$
\begin{aligned}
& {\left[\tilde{R}_{2}\right]_{i}\left(\left[\tilde{D}_{5}\right]_{k, j}+\left[\tilde{D}_{1}\right]\left[\tilde{R}_{2}\right]_{j}[\gamma]_{k}\right)[\Sigma]^{i, j}} \\
& \quad+\left[\tilde{D}_{2}\right]_{i}\left[\tilde{R}_{5}\right]_{k, j}[\Sigma]^{i, j}=O\left(\epsilon_{A P P R}^{3}\right)
\end{aligned}
$$

- Solving for the equilibrium coefficient vector γ :

$$
\begin{equation*}
\gamma_{k}=-\frac{\left(\left[\tilde{R}_{2}\right]_{i}\left[\tilde{D}_{5}\right]_{k, j}[\Sigma]^{i, j}+\left[\tilde{D}_{2}\right]_{i}\left[\tilde{R}_{5}\right]_{k, j}[\Sigma]^{i, j}\right)}{\left[\tilde{D}_{1}\right]\left[\tilde{R}_{2}\right]_{i}\left[\tilde{R}_{2}\right]_{j}[\Sigma]^{i, j}}+O\left(\epsilon_{A P P R}\right) \tag{8}
\end{equation*}
$$

- This gives us the first-order effect of state variables on portfolio time variation

Summary of Solution Method

- To implement, all we need to do is:

Summary of Solution Method

- To implement, all we need to do is:
- Solve the non-portfolio part of the model to yield a state-space solution

Summary of Solution Method

- To implement, all we need to do is:
- Solve the non-portfolio part of the model to yield a state-space solution
- Extract the appropriate rows from this solution to form the D and R matrices

Summary of Solution Method

- To implement, all we need to do is:
- Solve the non-portfolio part of the model to yield a state-space solution
- Extract the appropriate rows from this solution to form the D and R matrices
- Calculate γ based on equation (8)

Summary of Solution Method

- To implement, all we need to do is:
- Solve the non-portfolio part of the model to yield a state-space solution
- Extract the appropriate rows from this solution to form the D and R matrices
- Calculate γ based on equation (8)
- Next: consider simple and specific example for illustration

Example

- One-good, two-country endowment economy

$$
U_{t}=E_{t} \sum_{\tau=t}^{\infty} \beta^{\tau-t} \frac{C_{t}^{1-\rho}}{1-\rho}
$$

Example

- One-good, two-country endowment economy
- Agents have CRRA preferences:

$$
U_{t}=E_{t} \sum_{\tau=t}^{\infty} \beta^{\tau-t} \frac{C_{t}^{1-\rho}}{1-\rho}
$$

Example

- One-good, two-country endowment economy
- Agents have CRRA preferences:

- Endowments of single good and the money supply follow AR1 processes with iid. and symmetric shocks:

Example

- One-good, two-country endowment economy
- Agents have CRRA preferences:

$$
U_{t}=E_{t} \sum_{\tau=t}^{\infty} \beta^{\tau-t} \frac{C_{t}^{1-\rho}}{1-\rho}
$$

- Endowments of single good and the money supply follow AR1 processes with iid. and symmetric shocks:

$$
\begin{aligned}
\log Y_{t} & =\zeta_{Y} \log Y_{t-1}+\varepsilon_{Y, t} \\
\log Y_{t}^{*} & =\zeta_{Y} \log Y_{t-1}^{*}+\varepsilon_{Y^{*}, t} \\
\log M_{t} & =\zeta_{M} \log M_{t-1}+\varepsilon_{M, t} \\
\log M_{t}^{*} & =\zeta_{M} \log M_{t-1}^{*}+\varepsilon_{M^{*}, t}
\end{aligned}
$$

Time invariant Covariance matrix of Innovations

$$
\Sigma=\left[\begin{array}{cccc}
\sigma_{Y}^{2} & 0 & 0 & 0 \\
0 & \sigma_{Y}^{2} & 0 & 0 \\
0 & 0 & \sigma_{M}^{2} & 0 \\
0 & 0 & 0 & \sigma_{M}^{2}
\end{array}\right]
$$

Asset trade

- Home and foreign nominal bonds are traded: $\alpha_{B, t}$ and $\alpha_{B^{*}, t}$

Asset trade

- Home and foreign nominal bonds are traded: $\alpha_{B, t}$ and $\alpha_{B^{*}, t}$
- Budget constraint:

$$
W_{t}=\alpha_{B, t-1} r_{B, t}+\alpha_{B^{*}, t-1} r_{B^{*}, t}+Y_{t}-C_{t}
$$

Asset trade

- Home and foreign nominal bonds are traded: $\alpha_{B, t}$ and $\alpha_{B^{*}, t}$
- Budget constraint:

$$
W_{t}=\alpha_{B, t-1} r_{B, t}+\alpha_{B^{*}, t-1} r_{B^{*}, t}+Y_{t}-C_{t}
$$

- We also have

$$
W_{t}=\alpha_{B, t}+\alpha_{B^{*}, t}
$$

Equilibrium conditions

- FOCs for consumption and bond holdings:

Equilibrium conditions

- FOCs for consumption and bond holdings:

$$
\begin{gathered}
C_{t}^{-\rho}=\beta E_{t}\left[C_{t+1}^{\rho} r_{B^{*}, t+1}\right] \\
C_{t}^{*-\rho}=\beta E_{t}\left[C_{t+1}^{* \rho} r_{B^{*}, t+1}\right] \\
E_{t}\left[C_{t+1}^{-\rho} r_{B, t+1}\right]=E_{t}\left[C_{t+1}^{-\rho} r_{B^{*}, t+1}\right] \\
E_{t}\left[C_{t+1}^{*-\rho} r_{B, t+1}\right]=E_{t}\left[C_{t+1}^{*-\rho} r_{B^{*}, t+1}\right]
\end{gathered}
$$

Equilibrium conditions

- FOCs for consumption and bond holdings:

$$
\begin{aligned}
C_{t}^{-\rho} & =\beta E_{t}\left[C_{t+1}^{\rho} r_{B^{*}, t+1}\right] \\
C_{t}^{*-\rho} & =\beta E_{t}\left[C_{t+1}^{* \rho} r_{B^{*}, t+1}\right]
\end{aligned}
$$

- $\begin{aligned} E_{t}\left[C_{t+1}^{-\rho} r_{B, t+1}\right] & =E_{t}\left[C_{t+1}^{-\rho} r_{B^{*}, t+1}\right] \\ E_{t}\left[C_{t+1}^{*-\rho} r_{B, t+1}\right] & =E_{t}\left[C_{t+1}^{*-\rho} r_{B^{*}, t+1}\right]\end{aligned}$
- Resource constraint:

$$
C_{t}+C_{t}^{*}=Y_{t}+Y_{t}^{*}
$$

Equilibrium Portfolio

- Equilibrium bond holdings:

$$
\tilde{\alpha}_{B}=-\tilde{\alpha}_{B^{*}}=-\frac{\sigma_{Y}^{2}}{2\left(\sigma_{M}^{2}+\sigma_{Y}^{2}\right)\left(1-\beta \zeta_{Y}\right)}
$$

Equilibrium Portfolio

- Equilibrium bond holdings:

$$
\tilde{\alpha}_{B}=-\tilde{\alpha}_{B^{*}}=-\frac{\sigma_{Y}^{2}}{2\left(\sigma_{M}^{2}+\sigma_{Y}^{2}\right)\left(1-\beta \zeta_{Y}\right)}
$$

- Now solve for time variation around eqm. bond holdings

Time variation in bond holdings

- Recall the general formulas from above:

Time variation in bond holdings

- Recall the general formulas from above:
- $\gamma_{k}=-\frac{\left(\left[\tilde{R}_{2}\right]_{i}\left[\tilde{D}_{5}\right]_{k, j}[\Sigma]^{i, j}+\left[\tilde{D}_{2}\right]_{i}\left[\tilde{R}_{5}\right]_{k, j}[\Sigma]^{i, j}\right)}{\left[\tilde{D}_{1}\right]\left[\tilde{R}_{2}\right]_{i}\left[\tilde{R}_{2}\right]_{j}[\Sigma]^{i, j}}+O\left(\epsilon_{\text {APPR }}\right)$

Time variation in bond holdings

- Recall the general formulas from above:
- $\gamma_{k}=-\frac{\left(\left[\tilde{R}_{2}\right]_{i}\left[\tilde{D}_{5}\right]_{k, j}[\Sigma]^{i, j}+\left[\tilde{D}_{2}\right]_{i}\left[\tilde{R}_{5}\right]_{k, j}[\Sigma]^{i, j}\right)}{\left[\tilde{D}_{1}\right]\left[\tilde{R}_{2}\right]_{i}\left[\tilde{R}_{2}\right]_{j}[\Sigma]^{i, j}}+O\left(\epsilon_{A P P R}\right)$

$$
\hat{\alpha}_{t}=\gamma^{\prime}\left[\begin{array}{c}
x_{t} \\
s_{t+1}
\end{array}\right]=\gamma^{\prime} z_{t+1}=[\gamma]_{k}\left[z_{t+1}\right]^{k}
$$

Forming the appropriate matrices

$$
\begin{aligned}
& \tilde{R}_{2}=\left[\begin{array}{llll}
1 & -1 & -1 & 1
\end{array}\right] \\
& \tilde{D}_{1}=[2(1-\beta)] \\
& \tilde{R}_{5}=0 \\
& \tilde{D}_{5}=\left[\begin{array}{cccc}
\Delta_{2} & -\Delta_{1} & -\Delta_{1} & \Delta_{1} \\
\Delta_{1} & -\Delta_{2} & -\Delta_{1} & \Delta_{1} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\Delta_{3} & \Delta_{3}+2(1-\beta) & 0 & -2(1-\beta)
\end{array}\right]
\end{aligned}
$$

The matrix elements

$$
\begin{gathered}
\Delta_{1}=-\frac{1-\beta}{1-\beta \zeta_{Y}} \tilde{\alpha}_{B}\left\{\left(1-\zeta_{Y}\right) \rho\left[1-\zeta_{Y}(1-\beta) \beta\right]+\zeta_{Y}(1-\beta)\right\} \\
\Delta_{2}=-\frac{1-\beta}{1-\beta \zeta_{Y}} \frac{\beta\left(1-\zeta_{Y}\right)^{2} \zeta_{Y}(1-\beta \rho)}{\left(1-\beta \zeta_{Y}\right)\left(1-\beta \zeta_{Y}^{2}\right)}+\Delta_{1} \\
\Delta_{3}=-\frac{1-\beta}{1-\beta \zeta_{Y}} \frac{1-\beta\left[1-\left(1-\zeta_{Y}\right) \beta \rho\right]}{\beta}
\end{gathered}
$$

Solutions for time variations in bond holdings

$$
\begin{gathered}
\hat{\alpha}_{B, t}=\gamma_{1} Y_{t}+\gamma_{2} Y_{t}^{*}+\gamma_{3} M_{t}+\gamma_{4} M_{t}^{*}+\gamma_{5} \hat{W}_{t} \\
\hat{\alpha}_{B^{*}, t}=-\gamma_{1} Y_{t}-\gamma_{2} Y_{t}^{*}-\gamma_{3} M_{t}-\gamma_{4} M_{t}^{*}+\left(1-\gamma_{5}\right) \hat{W}_{t}
\end{gathered}
$$

Solutions for time variations in bond holdings

$$
\begin{gathered}
\hat{\alpha}_{B, t}=\gamma_{1} Y_{t}+\gamma_{2} Y_{t}^{*}+\gamma_{3} M_{t}+\gamma_{4} M_{t}^{*}+\gamma_{5} \hat{W}_{t} \\
\hat{\alpha}_{B^{*}, t}=-\gamma_{1} Y_{t}-\gamma_{2} Y_{t}^{*}-\gamma_{3} M_{t}-\gamma_{4} M_{t}^{*}+\left(1-\gamma_{5}\right) \hat{W}_{t}
\end{gathered}
$$

- where the vector of coefficients:

Solutions for time variations in bond holdings

$$
\begin{gathered}
\hat{\alpha}_{B, t}=\gamma_{1} Y_{t}+\gamma_{2} Y_{t}^{*}+\gamma_{3} M_{t}+\gamma_{4} M_{t}^{*}+\gamma_{5} \hat{W}_{t} \\
\hat{\alpha}_{B^{*}, t}=-\gamma_{1} Y_{t}-\gamma_{2} Y_{t}^{*}-\gamma_{3} M_{t}-\gamma_{4} M_{t}^{*}+\left(1-\gamma_{5}\right) \hat{W}_{t}
\end{gathered}
$$

- where the vector of coefficients:

$$
\gamma_{1}=\gamma_{2}=\frac{1}{2}\left(1-\frac{\left(1-\zeta_{Y}\right)\left[1-\rho+(1-\beta) \beta \rho \zeta_{Y}^{2}\right]}{1-\beta \zeta_{Y}}\right) \tilde{\alpha}_{B}
$$

Conclusion

- Paper extends Devereux and Sutherland (2006) solution method for equilibrium portfolios to higher order approximations

Conclusion

- Paper extends Devereux and Sutherland (2006) solution method for equilibrium portfolios to higher order approximations
- Finds analytical expressions for dynamic behavior of portfolios in open economy GE models

Conclusion

- Paper extends Devereux and Sutherland (2006) solution method for equilibrium portfolios to higher order approximations
- Finds analytical expressions for dynamic behavior of portfolios in open economy GE models
- Provides simple and clear insights into factors determining the dynamic evolution of portfolios

