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Abstract. Modern networks achieve robustness and scalability by maintaining
states on their nodes. These nodes are referred to as middleboxes and are essen-
tial for network functionality. However, the presence of middleboxes drastically
complicates the task of network verification. Previous work showed that the prob-
lem is undecidable in general and EXPSPACE-complete when abstracting away
the order of packet arrival.

We describe a new algorithm for conservatively checking isolation properties of
stateful networks. The asymptotic complexity of the algorithm is polynomial in
the size of the network, albeit being exponential in the maximal number of queries
of the local state that a middlebox can do, which is often small.

Our algorithm is sound, i.e., it can never miss a violation of safety but may fail to
verify some properties. The algorithm performs on-the fly abstract interpretation
by (1) abstracting away the order of packet processing and the number of times
each packet arrives, (2) abstracting away correlations between states of different
middleboxes and channel contents, and (3) representing middlebox states by their
effect on each packet separately, rather than taking into account the entire state
space. We show that the abstractions do not lose precision when middleboxes
may reset in any state. This is encouraging since many real middleboxes reset,
e.g., after some session timeout is reached or due to hardware failure.

1 Introduction

Modern computer networks are extremely complex, leading to many bugs and vul-
nerabilities that affect our daily life. Therefore, network verification is an increasingly
important topic addressed by the programming languages and networking communi-
ties [[17USU15016114430123112]]. Previous network verification tools leverage a simple net-
work forwarding model, which renders the datapath immutable. That is, normal packets
going through the network do not change its forwarding behaviour, and the control
plane explicitly alters the forwarding state at relatively slow time scales.

While the notion of an immutable datapath supported by an assemblage of routers
makes verification tractable, it does not reflect reality. Middleboxes are widespread in
modern enterprise networks [31]. A simple example of a middlebox is a stateful firewall
which permits traffic from untrusted hosts only after they have received a packet from
a trusted host. Middleboxes, such as firewalls, WAN optimizers, transcoders, proxies,
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Fig. 1: A middlebox chain with a buggy topology.

load-balancers and the like, are the most common way to insert new functionality in the
network datapath, and are commonly used to improve network performance and secu-
rity. Middleboxes maintain a state and may change their state and forwarding behavior
in response to packet arrivals. While useful, middleboxes are a common source of errors
in the network [27]].

As a simple example, consider the middlebox chain described in Fig.[I] In this net-
work, a firewall is used to ensure that low security hosts (l1,...,[,,) do not receive
packets from the S}, server, and a cache and load balancer are used to improve perfor-
mance. Unfortunately, the configuration of the network is incorrect since the cache may
respond with a stored packet, bypassing the security policy enforced by the firewall.
Swapping the order of the cache and the firewall results in a correct configuration.

Safety of Stateful Networks. We address the problem of verifying safety of networks
with middleboxes, referred to as stateful networks. We target verification of isolation
properties, namely, that packets sent from one host (or class of hosts) can never reach
another host (or class of hosts). Yet, our approach is sound for any safety property. For
example, it detects the safety violation described in Fig.|l} and verifies the safety of the
correct configuration of this network.

Our focus is on verifying the configuration of stateful networks, i.e., addressing er-
rors that arise from the interactions between middleboxes, and not from the complexity
of individual middleboxes. Hence, we follow [35]] and use an abstraction of middle-
boxes as finite-state programs. Previous work [3532] has shown that many kinds of
middleboxes, including proxy, cache proxy, NAT, and various kinds of load-balancers
can be modeled in this way, sometimes using non-determinism to over-approximate the
behaviour, e.g. to model timers, counters, etc. Since we are interested in safety proper-
ties, such an abstraction (overapproximation) is suitable.

As shown in [35]], it is undecidable to check safety properties in general and iso-
lation in particular, even for middleboxes with a finite state space, and even when the
order of packets pending for each middlebox is abstracted away the complexity is quite
high (EXPSPACE-complete). Therefore, in this paper we develop additional abstrac-
tions for scaling up the verification.

Our approach. This paper makes a first attempt to apply abstract interpretation [7]]
to automatically prove the safety of stateful networks. Our approach combines sound
network-level abstractions and middlebox-level abstractions that, together, make the
verification task tractable. Roughly speaking, we apply (i) order abstraction [33]], ab-
stracting away the order of packets on channels, (ii) counter abstraction [26], abstracting



away their cardinality, (iii) network-level Cartesian abstraction [7U11J13[], abstracting
away the correlation between the states of different middleboxes and different channel
contents, and (iv) middlebox-level Cartesian abstraction, abstracting away the correla-
tion between states of different packets within each middlebox.

The network-level abstractions, (i)-(iii), lead to a chaotic iteration algorithm that is
polynomial in the state space of the individual middleboxes and packets. However, the
number of middlebox states can be exponential in the size of the network. For example,
a firewall may record the set of trusted hosts and thus its states are subsets of hosts.
Therefore, the resulting analysis is exponential in the number of hostsﬁ

The middlebox-level Cartesian abstraction, (iv), is the key to reducing the complex-
ity to polynomial. The crux of this abstraction is the observation that the abstraction of
middleboxes as reactive processes that query and update their state in a restricted way
(e.g., [35]) allows to represent a middlebox state as a product of loosely-coupled packet
states, one per potential packet. This lets us define a novel, non-standard, semantics of
middlebox programs that we call packet effect semantics. The packet effect semantics
is equivalent (bisimilar) to the natural semantics. However, while the natural semantics
is monolithic, the packet effect semantics decomposes a single middlebox state into the
parts that determine the forwarding behavior of different packets, and therefore facili-
tates the use of Cartesian abstraction to further reduce the complexity.

One of the main challenges for abstract interpretation is evaluating its precision.
To address this challenge, we provide sufficient conditions that ensure precision of our
analysis. Namely, we show that if the network is safe in the presence of packet re-
ordering and middlebox reverts, where a middelbox may revert to its initial state at
any moment, then our analysis is guaranteed to be precise, and will never report false
alarms. This is, to a great extent, due to the packet effect semantics, which allows to
use a middlebox-level Cartesian abstraction without incurring additional precision loss
for such networks. Notice that middlebox reverts enable modelling arbitrary hardware
failures, which have not been addressed by previous work on stateful network verifica-
tion (e.g., in [35]). Surprisingly, verification becomes easier under the assumption that
middleboxes may reset at any time. (Recall that for arbitrary unordered networks safety
checking is EXPSPACE-complete.)

In summary, the main contributions of this paper are

— We introduce the first abstract interpretation algorithm for verifying safety of state-
ful networks, whose time complexity is polynomial in the size of the network, albeit
exponential in the maximal number of queries of the local state that a middlebox
can do, which is often small even for complex middelboxes (up to 5 in our exam-
ples).

— We develop packet effect semantics, a non-standard semantics of middelbox pro-
grams that facilitates middlebox-level Cartesian abstraction, reducing the complex-
ity of the abstract interpretation algorithm from exponential in the size of the net-
work to polynomial without incurring any additional precision loss for unordered
reverting networks.

® Unfortunately, if the set of hosts is not fixed, the safety problem becomes undecidable (even
under the unordered abstraction) [1]. This means that, in general, it is not possible to alleviate
the dependency of the complexity on the hosts.



— We provide sufficient conditions for precision of the analysis that have a natural
interpretation in the domain of stateful networks: ignoring the order of packet pro-
cessing and letting middleboxes revert to their initial states at any time.

— We prove lower bounds on the complexity of safety verification in the presence of
packet reordering and/or middlebox reverts, showing that our algorithm is essen-
tially optimal.

— We implement our analysis and show that it scales well with the number of hosts
and middelboxes in the network.

We defer proofs of key claims to the extended version of this paper [1].

2 Expressing Middlebox Effects

This section defines our programming language for modeling the abstract behavior of
middleboxes in the network. Our modeling language is independent of the particular
network topology, which is defined in Sec.|3| The proposed language, AMDL (Abstract
Middlebox Definition Language), is a restricted form of OCCAM [_29], similar to the
languages of [35132].

We first define the syntax and informal semantics of AMDL (Sec. @; we then
define a formal “standard” relation effect semantics (Sec.[2.2)); we continue by defining
an alternative packet effect semantics (Sec.[2.3), which is bisimilar to the relation effect
semantics (Sec. [2.4); and finally we present a localized version of the packet effect
semantics (Sec. @]), which is suitable for Cartesian abstraction.

Packets. Middlebox behavior in our model is defined with respect to packets that consist
of a fixed, finite, number of packet fields, ranging over finite domains. As such, a packet
p € P in our formalism is a tuple of packet fields over predefined finite sorts. In our
examples, a packet is a tuple (s, d, t), where s, d are the source and destination hosts,
respectively, taken from a finite set of hosts H, and ¢ is a packet tag (or type) that
ranges over a finite domain 7. In this case, | P| is polynomial in |H|. (Our approach is
also applicable when additional fields are added, e.g., for modeling the packet’s payload
via an abstract finite domain.)

2.1 Syntax and Informal Semantics

Fig. 3| describes the syntax of the AMDL languageﬂ Middleboxes are implemented as
reactive processes, with events triggered by the arrival of packets. If multiple pack-
ets are pending, the AMDL process non-deterministically reads a packet from one of
the incoming channels of the process. The packet processing code is a loop-free block
of guarded-commands, which may update relations and forward potentially modified
packets to some of the output ports. AMDL uses relations over finite domains to store
the middlebox state. These are the only data structures allowed in AMDL. The only
relation operations allowed are inserting a value to a relation, removing a value from
a relation, and membership queries — checking whether a value is in a relation. For a

7 In the code examples, we write p for the triple (src, dst, type) and use access path nota-
tion to refer to the fields, e.g., p.src.



sfirewall = do
internal_port ? p =>
if
p.dst in trusted => external_port ! p
O

p.type = 0 => // request packet
external_port ! p;

requested(p.dst) := true
fi
O
external_port ? p =>
if
p.src in trusted => internal_port ! p
O
p.type = 1 and p.src in requested =>
// response packet with a request
trusted(p.src) := true
fi
od

Fig.2: AMDL code for session firewall.

membership query of the form @ in r, we denote the relation, r, used in the query by
rel(q) and denote the tuple of atoms @ by atoms(q). For example, the code for a session
firewall is depicted in Fig.[2]

Middleboxes may enforce safety properties using the abort command. For example,
an isolation middlebox would abort when a forbidden packet is received.

2.2 Middlebox Relation Effect Semantics

We now sketch the semantics of AMDL. The definitions below supply a part of the full
network semantics, which is given in Sec.
Middlebox States. Each middlebox m € M maintains its own local state as a set of
relations. The domain of a relation 7 defined over sorts s1_j is D(r) = D(s1) X ... X
D(sy), where D(s;) is the domain of sort s;. We use rels(m) to denote the set of
relations in m, and D(m) to denote the union of D(r) over r € rels(m).

The middlebox state of m is then a function s € SR[m] = rels(m) — p(D(m)),
mapping each r € rels(m) to v C D(r). In addition, we introduce a unique error
middlebox state, denoted err. We assume that err € 2®[m] for every middlebox m.

Middlebox Transitions. Middlebox transitions have the form
(pvc)/(pivci)izl--k Rg ER[m] % ER [m}

where (p, ¢) denotes packet-channel at the input, and (p;, ¢;);=1.. is the sequence of
packet-channel pairs that the middlebox outputs.



(mbox) ::=m = do (pblock) [O {pblock)]* od
(pblock) == c? pfid = {gc)

(gc) = (cond) = (action) | if (gc) [0 (gc)]” fi

(action) ::= (action) ; {(action) | ¢! (atom) | r({atom)) := (cond) | abort

(cond) ::= true | {cond) and (cond) | not (cond) | (atom) = (atom) | (atom) in r
(atom) = pfld | const

Fig.3: AMDL syntax. € denotes a comma-separated list of elements drawn from the
domain e. abort imposes a safety condition. ¢ 7 p reads p from a channel ¢ and ¢! p
writes p into c¢. We write m for a middlebox name, r for a relation name, and ¢ for
a channel name. We write const for a constant symbol and pfld for identifiers used to
match fields in packets, e.g., src. Non-deterministic choice is denoted by L.

For example, for s “ [requested — 0, trusted — (], the guarded command
corresponding to the internal port of the firewall middlebox (Fig.|2) induces a transition
((h1,h2,0),¢n)/((h1,h2,0) Cout)

s g ' where s’ = [requested + {hy}, trusted
0.

abort commands induce transitions to the err state.

The formal definition of the middlebox transitions appears in the extended version
of this paper [!1]].

2.3 Middlebox Packet Effect Semantics

We now present a semantics that is equivalent to the relation effect semantics. The
semantics is based on an alternative (yet isomorphic) representation of middlebox states
that reveals a loose coupling between the parts of the state that are relevant for different
packets. This loose coupling then facilitates a Cartesian abstraction that abstracts away
correlations between packets in the same state.

Packet Effect Representation of Middlebox State Recall that in Sec. 2.1| we restrict
the values that can be used in a middlebox program to either constants or the values of
fields of the currently processed packet. We do not allow extracting tuples from the rela-
tion (e.g., by having a get command, or by iterating over the contents of the relation).
Instead, we limit the interaction with the relation to checking whether a tuple (that con-
sists of packet fields or constants) exists in the relation. Consequently, instead of storing
the contents of all relations, the state of the middlebox can be represented by mapping
all potential packets in the network to their effect on the middlebox. Specifically, we
map each packet and membership query in the program to whether that membership
query will be evaluated to True when the program is executed on that packet.

For every middlebox m, we denote by (Q(m) the set of membership queries in m’s
program. (We need not distinguish between different instances of the same query.) For
example, in Fig.2} Q(fw) = {p.dst in trusted, p.src in trusted,
p.src in requested}.



The packet effect state of a middlebox m is a function s € X¥[m] £ P — Q(m) —
{True, False}, mapping each packet p € P to the evaluation of all queries of m when
p is the input packet, thus capturing the way in which p traverses m’s program. We refer
to s(p) € Q(m) — {True, False} as the packet state of packet p in middlebox state s.
We extend X [m] with an error state \p € P. err, which is also denoted err.

Middlebox Transition Relation in the Packet Space The semantics of middlebox m

B Bici)izok, 5P x

in the packet space is defined via a transition relation

XP[m]. When m is clear, we omit it from the notation. A transition 3
§' exists if (one of) the sequence of operations applied on § when packet p arrives on
channel ¢ outputs (p;, ¢;);=1.. % and leads to §'.

The semantics of operations is defined similarly to the “standard” relation effect
semantics. The semantics of error and output actions (that do not change the middlebox
state) is straightforward. Next, we explain the semantics of the operations that depend
on or change the middlebox state — membership queries and relation updates.

Consider a membership query g. Let s be the middlebox state before evaluating ¢,
i.e., s is the state that results from executing all previous relation updates, and let p be
the packet that invoked the middlebox transition. Then ¢ is evaluated to $(p)(q).

Next, consider a relation update. A relation update r(a) :=cond updates the packet
states of all packets that are affected by the operation. This is done as follows. As before,
let 5 be the intermediate state of m right before executing the operation, and let p be
the packet that the middlebox program is operating on. Consider the case where cond
evaluates to True in §, corresponding to addition of a value. (Removal of a value is
symmetric.) We denote by a(p) the result of substituting each field name in @ by its
value in p. That is, @(p) € D(r) is the value being added to r. This addition may affect
the value of membership queries ¢ € Q(m) with rel(q) = r (querying the same relation
r) for other packets p as well, in case that atoms(q)(p), i.e., the value being queried
on p, is the same as the value a(p) being added to r. Therefore, the intermediate state
obtained after the relation update operation has been applied is

True, if rel(q) = r Aatoms(q)(p) = a(p).

§=Xp€P \eQ(m).
P ¢ €Qm) 5(p)(q), otherwise.

Namely, the operation updates to True the value of queries that coincide with the tuple

of elements inserted to the relation.

Example 1. Consider the packet effect state § = \p. \g.False € XP[fiv] of the fire-
wall (Fig. [2), where ¢ ranges over the three membership queries in the code. Upon
reading the packet (hq, ho,0) from an internal port, the middlebox performs a se-
quence of internal transitions which includes evaluating the expression “p.type=0"
to True, outputting the packet (h1, he, 0) to the output port, and executing the command
requested (p.dst) := true, which results in updating the state to:

el - {True, if rel(q) = requested A atoms(q)(p) = hs
s = Ap. \q. :
False, otherwise.



That is, §'((he, *,%))(p.src in requested) = True and all the other values

((h1,h2,0),¢in)/((h1,h2,0),cont) b d. O

in §’ remain False as before. Therefore, 5

2.4 Bisimulation of Packet Effect Semantics and Relation Effect Semantics

We continue by showing that the transition systems defining the semantics of middle-
boxes in the packet effect and in the relation effect representations are bisimilar.

To do so, we first define a mapping ps: X®[m] — XP[m] from the relation state
representation to the packet effect state representation. Recall that the relation state
representation of middlebox states is s € XR[m] = rels(m) — @(D(m)). Given a
state s € XR[m], ps maps it to the packet effect state s* defined as follows:

¥ £ \p € P. \g € Q(m). atoms(q)(p) € s(rel(q)).

That is, for every input packet p, the value in s¥ of the query ¢ € Q(m) is equal to the
evaluation of the same query in s based on an input packet p.

Definition 1 (Bisimulation Relation). For a middlebox m, we define the relation ~,, C
YR[m] x XP[m] as the set of all pairs (s, sP) such that s = sP = err or ps(s) = sP.

Lemma 1. Let s € Y%[m] and 5§ € X¥[m) and s ~,,, 3. Then the following holds:
(p,0)/o

— For every state s' € XR[m), if s ———g s’ then there exists a state 5 € X¥[m)]

s.t. ~M> s and s’ ~,, §, and

— For every state §' € X¥[m] if § (177—>p §' then there exists a state s' € X%[m] s.t.

M}RS and s’ ~,, §'.

2.5 Locality of Packet-Effect Middlebox Transitions

In this section we present a locality property of the packet effect semantics that will
allow us to efficiently compute an abstract transformer when applying a Cartesian ab-
straction. Namely, we observe that an execution of an operation r(a) :=cond, in the
context of processing an input packet p, potentially updates the packet states of all
packets. However, for each packet p, the updated packet state §'(p) depends only on its
pre-state $(p), the input channel ¢, the input packet p, and 3(p), which determines the
value of queries; it is completely independent of the packet states of all other packets.
Since, in addition, the execution path of the middlebox when processing input packet p
depends only on the packet state of p, this form of locality, which we formalize next,
extends to entire middlebox programs.

Definition 2 (Substate). Ler § € P — Q(m) — {True, False} be a packet effect
state. We denote by 5|, 5y € {p,p} — Q(m) — {True, False} the substate obtained

~7  def

from § by dropping all packet states other than those of p and p. Let X¥[m,p,p] =
{p,p} — Q(m) — {True, False} denote the set of substates for p and p.



Definition 3 (Substate transition relation). We define the substate transition relation

%pmﬂ: XPIm,p,p] x XPIm,p,p| as follows. A substate transition

D wﬁa[mﬁ] 8[p, p]’ holds if there exist § and §' such that 3|, 5 =

Slp. 7l
$lp. ) 5'lip) = 3lp, B and 5 LI

The locality of AMDL programs manifests itself in the ability to compute the sub-

state transition relation, w}p[p’ﬁ], directly from the code (without first

computing the transition relation and then using projection). This property will be im-
portant later to efficiently compute a network-level abstract transformer (Sec. [.1):

Lemma 2 (2-Locality). Given S[p, p| and 3[p, p|’, checking whether

1 o (p0)/(pisci)i=1.. ot~
3[ ) ]—lk”’[Pﬁ] S[ 7py

can be done in time linear in the size of the middlebox program.

3 Network Semantics

This section defines the semantics of stateful networks by defining the semantics of
packet traversal over communication channels in the network, and the transitions be-
tween network configurations. We first define a concrete semantics, followed by two
relaxations: unordered semantics and reverting semantics. These relaxations provide
sufficient conditions for completeness of the abstract interpretation performed in Sec. ]

Network Topology. A network N is a finite bidirecte(ﬂ graph of hosts and middleboxes,
equipped with a packet domain. Formally, N = (H U M, E, P), where:

P is a set of packets.

H is a finite set of hosts. A host h € H consists of a unique identifier and a set of
packets P, C P that it can send.

— M is a finite set of middleboxes. A middlebox m € M is associated with a set of
communication channels C,,.

E C {{h,cm,m),(m,cm,h) | h € Hm e M, c, € Cop, FU{{m1, ¢y, Cny s M2) |
my,mg € M,cpm, € ChyyCm, € C,} is the set of directed communication
channels in the network, each connecting a communication channel c,,, € Cp,
of middlebox m; either to a host, or to a communication channel ¢,,, € Cp,, of
middlebox ms. For e of the form (m, ¢,,, h) or (m, ¢, €y, M2), We say that e is
an egress channel of middlebox m connected to channel ¢,,, and an ingress channel
of host h, respectively middlebox mg, connected to channel ¢,y,, .

The network semantics is parametric in the middlebox semantics. It considers the
semantics of a middlebox m € M to be a transition system with a finite set of states

X[m], an initial state o7(m) € X[m] and a set of transitions PO/ wiedizar, o 5 [m] x

X[m]. This can be realized with either the relation effect semantics or the packet effect
semantics defined in Sec.[2.2]and Sec.[2.3] respectively.

8 A bidirected graph is a directed graph in which every edge has a matching edge in the opposite
direction. i.e., (u,v) € E <= (v,u) € E.
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3.1 Concrete (Ordered) Network Configurations

All variants of the network semantics defined in this section are defined over the same

set of configurations. Let X[M] = |J X[m] denote the set of middlebox states of
meM
all middleboxes in a network. An ordered network configuration (o,7) € ¥ = (M —

XY[M]) x (E — P*) assigns middleboxes to their (local) middlebox states and com-
munication channels to sequences of packets. The sequence of packets on each channel
represents all packets sent from the source and not yet processed by the destination.

Initial Configuration. We denote the ordered initial configuration by (o7, Ae € E . ¢€),
where o : M — X[M] denotes the initial state of all middleboxes.

Error Configurations. We say that a configuration is an error configuration if any of
its middleboxes is in the error state. We denote all error configurations by err.

3.2 Concrete (FIFO) Network Semantics

We first consider the First-In-First-Out (FIFO) network semantics, under which com-
munication channels retain the order in which packets were sent.

Ordered Network Transitions. The network semantics is defined via middlebox transi-
tions and host transitions.

A middlebox transition is (o, ) Z25 | (¢, ') where the following holds: (i) p is
the first packet on the channel e € E, (ii) the channel e is an ingress channel of middle-

box m connected to channel ¢ € C,,, (iii) o(m) B Birci)izt o’(m), meaning that

o’(m) is the result of updating o(m) according to the middlebox semantics, (iv) the
channels e; are egress channels of middlebox m connected to the channels ¢; € Cy,,
(v) 7' is the result of removing packet p from (the head of) channel e and appending p;
to the tails of the appropriate channels e;, and (vi) the states of all other middleboxes
equal their states in o.

A host transition is (o, 7) L (o, ") where one of the following holds:
Packet Production (i) the channel e is an egress channel of host h, (ii) p € Py is a
packet sent by h, and (iii) 7’ is the result of appending p to the tail of e; or

Packet Consumption (i) the channel e is an ingress channel of host h, (ii) p is the first
packet on the channel e, and (iii) 7’ is the result of removing p from the head of e.

We denote the ordered transition relation obtained by the union of all middlebox
and host transitions by =,. It is naturally lifted to a concrete transformer 7°: p(X) —
©(X) defined as:

T(X) = {(o,7') | (0,7) € X A (0,7) =, (¢/,7)} .

Collecting Semantics. The ordered collecting semantics of a network N is the set of
configurations reachable from the initial configuration.

IN]° £ LeastFixpoint(T°) (o1, \e € E .¢) = Ej (T°)(or,Ae € E.€) .
i=1
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Definition 4 (Safety Verification Problem). For a network N and initial state o for
the middleboxes, the safety verification problem is to determine whether an error con-
figuration is reachable from the initial configuration. That is, whether err € [N]°.

Theorem 1. [35|] The safety verification problem for ordered networks is undecidable.

In this work, we tackle the undecidability of verification by developing a sound
abstract interpretation that can be used to check the safety of networks. Before doing
so, we present two relaxed network semantics that motivate the abstractions we employ,
and also provide sufficient conditions for their completeness.

3.3 Unordered and Reverting Network Semantics

The “unordered” semantics allows channels to not preserve the packet transmission or-
der. Namely, packets in the same channel may be processed in a different order than the
order in which they were received. The “reverting” semantics allows middleboxes to
revert to their initial state after every transition. Formally, these relaxed semantics ex-
tend the set of network transitions (and consequently, the transformer and the collecting
semantics) with reordering transitions and reverting transitions, respectively.

A reordering transition has the form (o, ) = (o, ') where for the channel e € E,
7’(e) is a permutation of 7(e) and for all other channels €’ # e, 7’'(e’) = w(e’).

A reverting transition has the form (o,7) = (o’,7) where for the middlebox
m € M, o’'(m) = or(m) and for all other middleboxes m’ # m, o’(m) = o(m).

The unordered network transitions consist of the ordered transitions as well as the
reordering transitions; the ordered reverting transitions consist of the ordered transi-
tions and the reverting transitions; and the unordered reverting transitions consist of all
of the above. We denote the corresponding collecting semantics by [N]“, [N]°" and
[N]“", respectively. Clearly,

INJ° € [N]* € [N]*" and [NJ° € [NJ" € [N]*"

By plugging-in the two representations of middleboxes in the definition of the net-
work semantics, we obtain two variants of the network semantics for each of the four
variants considered so far. In the sequel, we use a pa subscript to refer to the packet
effect semantics, and no subscript to refer to the relation effect semantics. The bisim-
ulation between middlebox representations is lifted to a bisimulation between each re-
lation state network semantics and the corresponding packet state network semantics.
Therefore, the following holds:

Lemma 3. For every semantic identifier i € {o, u,or, ur}, err € [N]* iff err € [N]7,.

The safety verification problem is adapted for the different variants of the network
semantics. The following theorem summarizes the complexity of the obtained prob-
lems. (We do not distinguish the packet effect semantics from the relation effect seman-
tics, since due to Lem. [3]they induce the same safety verification problem.)

Theorem 2. The safety verification problem is
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(i) EXPSACE-complete for unordered networks [35]].
(ii) undecidable for ordered reverting networks.
(iii) coNP-hard for unordered reverting networks.

Thm. justifies the need for the unordered abstraction even in reverting net-

works. Thm. implies that our abstract interpretation algorithm, presented in Sec. 4]
which is both sound and complete for the unordered reverting semantics, is essentially
optimal since it essentially meets the lower bound stated in the theorem (it is exponen-
tial in the number of state queries of any middlebox and polynomial in the number of
middleboxes, hosts and packets).
Sticky Properties. Unordered reverting networks have a useful property of sticky pack-
ets, meaning that if a packet is pending for a middlebox in some run of the network then
any run has an extension in which the packet is pending again with multiplicity > n,
for any n € N. This property implies a stronger property:

Lemma 4 (Sticky Packet States Property). For every channel e, packets p, p, mid-
dlebox m and packet state v of p in m: If, in some reachable configuration, channel e
contains p and in some (possibly other) reachable configuration the packet state of p in
m is U, then there exists a reachable configuration where simultaneously e contains p
and the packet state of p in m is V.

Intuitively, Lem. E]follows from the fact that all middleboxes can revert to their ini-
tial state and the unordered semantics enables a scenario where the particular state and
packets are reconstructed. It ensures that ignoring the correlation between the packet
states of a middlebox for different packets, the packet states across different middle-
boxes, and the occurrence (and cardinality) of packets on channels does not incur any
precision loss w.r.t. safety. This makes the network-level abstraction defined in Sec. 4]
which treats channels as sets of packets and ignores correlations between packet states
and channels, precise.

4 Abstract Interpretation for Stateful Networks

In this section, we present our algorithm for safety verification of stateful networks
based on abstract interpretation of the semantics [N],, and discuss its guarantees.

4.1 Abstract Interpretation for Packet Space

We apply sound abstractions to different components of the concrete packet state net-
work domain. Due to space constraints, we do not describe the intermediate steps
in the construction of the abstract domain, and only present the final domain used by
the analysis. Roughly speaking, the obtained domain abstracts away (i) the order and
cardinality of packets on channels; (ii) the correlation between the states of different
middleboxes and different channel contents; and (iii) the correlation between states of
different packets within each middlebox.

Cartesian Packet Effect Abstract Domain. Let Q — {T,F} denote the union of
Q(m) — {T, F} over all middleboxes m € M, including the error state err. The
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Cartesian abstract domain of the packet state of the network is given by the lattice
A= (A L C,U),where A S (M - P = o(Q — {T,F})) x (E — p(P)).
That is, an abstract element maps each packet in each middlebox to a set of possi-
ble valuations for the queries, and each channel to a set of packets. The bottom ele-
ment is 1 = (Am. Ap. 0, Ae. D), the partial order a; C a9 is defined by pointwise

set inclusions per middlebox and channel, and join is defined by pointwise unions
def

(w1, wa) U (wi,wp) = (Am. Ap. wi(m)(p) U wi(m)(p), Ae. wa(p) U w(p))-

Let C = (p(X"), C) be the concrete network domain. We define the Galois con-
nection (C, 7, , A) as follows. The abstraction function a : p(XF) — A for a set of
packet state configurations X C X7 is defined as (X)) = (Wppoxes, Wehans) Where

Wiboxes = A Ap. {o(m)(p) | (o,7) € X} and Wehans = Ae. |J  w(e) .
(o,m)eX

The concretization function v : A — p(X7) is induced by o and C. We denote the
initial abstract element as a; = a({(or,\e € E.0)}).
Abstract Transformer. Next, we define the abstract transformer 7% : A — A, which
soundly abstracts the concrete transformer 7° and show that it is efficient, due to the
locality property of middlebox transitions. We use the predicate in(c, e, m) to denote
that the network channel e is an ingress channel of middlebox m, connected to its ¢
channel. Similarly, out(c, e, m) means that e is an egress channel of m connected to its
¢ channel. Further, let [z1—y1, . .., Z,—Yyy] denote a mapping from each z; to y; for
i =1..nand f[z — y] denote the function f updated by (re-)mapping x to y.
Definition 5. Let (wy,w2) € (M — P — p(Q — {T,F})) x (E — p(P)) be an

abstract element. Then T*(wy,ws) =

e M,
€ wo(e),in(c,e,m),
[ J§ o o < I 50,70 05
) p,p| = [p+— 8(p),p > s(p)l,
w2[€ﬂ—>£«12(€z) U {pz}]) (4) §[ ,]5] (p,e)/(pisci)i=1..k P E[p,ﬁ]/,
(5) ps = s[p—{ 5[p,p|'(®) },
(6) out(c;,e;,m),i = 1..k

3

3)

3

Intuitively, the transformer updates the abstract state by joining the individual ef-
fects obtained by: (1) considering each middlebox, (2) considering each input packet to
the middlebox, (3) considering every possible substate for the input packet p and every
other packet p, (4) considering every possible substate transition, (5) adding the new
packet state for p to the relevant set, and (6) adding each output packet to the corre-
sponding edge.

Proposition 1. The running time of T* is O((|M|+|E|)-|P|?-229me=1), where Q az
denotes the maximal set of queries Q(m) over all middleboxes m € M.
Our algorithm for safety verification computes pf = LeastFixpoint(T*)(a;) =

L Tﬁi(al) and checks whether err € pif.
i=1
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Complexity of Least Fixpoint Computation. The height of the abstract domain lattice is
determined by the number of packets that can be added to the channels of the network—
(|P| - |E]), multiplied by the number of state changes that can occur in any of the
middleboxes—O(| M| - | P| - 2!9!). The time complexity of the abstract interpretation is
bounded by the height of the abstract domain lattice multiplied by the time complexity
of the abstract transformer:

O(|P|* - |E| - [M] - 2%19mesl - (|M| + |E])) .

4.2 Soundness and Completeness

Our algorithm is sound in the sense that it never misses an error state. This follows from
the use of a sound abstract interpretation:

Theorem 3 (Soundness). [N]2, C [N]ur C ~(pu?).
Our algorithm is also complete relative to the reverting unordered semantics.
Theorem 4 (Completeness). ;f C a([N]5a)-

The proof of Thm. 4| relies on the sticky property formalized by Lem. 4| The theorem
states that for reverting unordered networks s is at least as precise as applying the
abstraction function on the concrete packet state network semantics. In particular, this
implies that if 4 is an abstract error element then err € [N pa- As aresult, for such
networks our algorithm is a decision procedure. For other networks it may produce false
alarms, if safety is not maintained by an unordered reverting abstraction.

Properties. Recall that we express safety properties via middleboxes in the network.
Therefore, in unordered reverting networks, the possibility to revert applies to the safety
property as well, and may introduce false alarms due to addition of behaviors leading
to error. However, for safety properties such as isolation which are suffix-closed (i.e.,
all the suffixes of a safe run are themselves safe runs), this cannot happen|[1].

5 Implementation and Initial Evaluation

In this section, we describe our implementation of the analysis described in Sec. ] and
report our initial experience running the algorithm on a few example networks.
Implementation. We have developed a compiler, amd1c, which takes as input a net-
work topology and its initial state (given in json format) and AMDL programs for
the middleboxes that appear in the topology. The compiler outputs a Datalog program,
which can then be efficiently solved by a Datalog solver. Specifically, we use Log-
icBlox [3].

The generated Datalog programs include three relations: (i) packet sSeen, which
stores the packets sent over the network channels; (ii) middleboxState, which
stores the packet state of individual packets in each middlebox (i.e., the possible valua-
tion of each middlebox program’s queries for each individual packet); and (iii) abort,
which stores the middleboxes that have reached an err state.
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Fig. 4: Topology of the datacenter example.

We encode the packets that hosts can send to their neighboring middleboxes and the
initial state of the middleboxes as Datalog facts (edb), and the effects of the middlebox
programs, i.e. relation update actions and packet output actions, as Datalog rules (idb).

We then use the datalog engine to compute the fixed point of the datalog pro-
gram. That fixed point is exactly the least fixed point p# = LeastFixpoint(T*)(ar) =

i'—lol T# (ar)

Evaluation. The main challenge in acquiring realistic benchmarks is that middlebox
configuration and network topology are considered security sensitive, and as a result
enterprises and network operators do not release this information to the public. Con-
sequently, we benchmarked our tool using the synthetic topologies and configurations
described by [24].

Our benchmarks focus on datacenter networks and enterprise networks. The set of
middleboxes we used in our datacenter benchmarks is based on information provided
in [27], and on conversations with datacenter providers. We ran both a simple case
where each tenant machine is protected by firewalls and an IPS (Intrusion Prevention
System); and a more complex case where we use redundant servers and distribute traffic
across them using a load balancer. Our enterprise topology is based on the standard
topology used in a variety of university departments including UTUC (reported in [18]]),
UC Berkeley, Stanford, etc. which employ firewalls and an IP gateway.

We ran two scaling experiments, measuring how well our system scales when the
number of hosts or the number of middleboxes in the network increases The experi-
ments were run on Amazon EC2 r4.16 instances with 64-core CPUs and 488GiB RAM.

Multi Tenant Datacenter Network. Fig.4|illustrates the topology of a multi tenant dat-
acenter. Each rack hosts a different tenant, and the safety property we wish to verify is
isolation between the hosts of the two racks. In this example the network also employs
an IPS to prevent malicious traffic from reaching the datacenter. Actual IPS code is
too complex to be accurately modeled in AMDL; instead we over-approximate the be-
haviour of an IPS by modeling it as a process that non-deterministically drops incoming
packets.

Enterprise Network. Fig. |5a)illustrates the topology of an enterprise network. The en-
terprise network consists of three subnets, each with a different security policy. The
public subnet is allowed unrestricted access with the outside network. The quarantined
subnet is not allowed any communication with the outside network. The private subnet
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Fig. 5: Topology and running times of the host scalability test.

can initiate communication with a host in the outside network, but hosts in the outside
network cannot initiate communication with the hosts in the private subnet.

To evaluate the feasibility of our solution, we ran the analysis of Fig. [5a] on net-
works with varying numbers of hosts ranging from 20 to 2,000. Our implementation
successfully verified a network with 2,000 hosts in under four hours, suggesting that
the implementation could be used to verify realistic networks. Fig. [5b| shows the times
of the analysis on an enterprise network with 20-2,000 hosts.

Datacenter Middlebox Pipeline. Fig.[6adescribes a datacenter topology with a pipeline
of middleboxes connecting servers to the Internet. The topology contains multiple mid-
dlebox pipelines for load-balancing purposes and to ensure resiliency. We use this topol-
ogy to test the scalability of our approach w.r.t the size of the network, by adding addi-
tional middlebox pipelines and keeping the number of hosts constant.

Fig. [6b|shows the running times of the analysis of a datacenter with 3—189 middle-
boxes (1-32 middlebox chains). All topologies contained 1000 hosts.

6000

PS FW Load
Balancer v

S1

. e
E ‘ 2000
h h,
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Sz

(a) Topology with multiple middlebox-
pipelines

(b) Running time (seconds).

Fig. 6: Topology and running times of the network topology scalability test.



6 Concluding Remarks and Related Work

In this paper, we applied abstract interpretation for efficient verification of networks
with stateful nodes. We now briefly survey closely related works in this area.

Topology Independent Network Verification. Early work in network verification fo-
cused on proving correctness of network protocols [6/28]]. Subsequent work in the
context of software define networking (SDN) including Flowlog [23] and VeriCon [4]]
looked at verifying the correctness of network applications (implemented as middle-
boxes or in network controllers) independent of the topology and configuration of the
network where these were used. However, since this problem is undecidable, these
methods use bounded model checking or user provided inductive invariants, which are
hard to specify even in simple network topologies.

Verifying Immutable Network Configurations. Verifying networks with immutable
states is an active line of research [18I14116/5015133U30U2412]). In the future, we hope
to combine our abstraction with the techniques used in these papers. We hope to use
similar techniques to Veriflow [16] to handle switches more efficiently, and leverage
compact header representation described in NetKat [[12].

Stateful Network Verification. Previous works provide useful tools for detecting errors
in firewalls [2019/22]. Buzz [9] and SymNet [34] have looked at how to use sym-
bolic execution and packet generation for testing and verifying the behavior of stateful
networks. These works implement testing techniques rather than verifying network be-
havior and are hence complementary to our approach.

Velner et al. [35] show that checking safety in stateful networks is undecidable, ne-
cessitating the use of overapproximations. They provide a general algorithm for check-
ing safety using Petri nets. This algorithm has high complexity and scales poorly. They
also provide an efficient algorithm for checking safety in a limited class of networks.

Exploring Network Symmetry. Recent work explored the use of bisimulation to lever-
age the extensive symmetry found in real network topologies [21]] to accelerate state-
less [23]] and stateful [24] network verification. Both approaches are not automatic. We
are encouraged by the fact that our automatic approach achieves performance compa-
rable to VMN [24] on the same examples without requiring human intervention. We
attribute this improvement to modularity and to the use of packet state representation.

Extensible Semantics. Previous works have explored ideas similar to the reverting se-
mantics, to obtain complexity and decidability results in different settings.

In [8]] the authors analyze the complexity of verifying asynchronous shared-memory
systems. They use copycat processes that mirror the behaviour of another process to
show that executions are extensible, similarly to how our work uses the sticky packet
states property (Lem. ). In their model, when the processes are finite state machines,
they obtain coNP-complete complexity for verification.

In [10] the authors explore a more general setting of well-structured transition sys-
tem, and present the home-state idea, which allows the system to return to its initial
state (essentially, revert). They obtain decidability results for well-structured transition
systems with a home-state, but do not show any tighter complexity results.
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