Corporate Finance: Capital structure and corporate control

Yossi Spiegel Recanati School of Business

Grossman and Hart, BJE 1980

"Takeover Bids, the Free-Rider Problem, and the Theory of the Corporation"

The free rider problem

□ The timing:

Period 1	Period 2
The firm is established by an entrepreneur and is worth X	A raider appears and can increase value by R; the raider makes a tender offer X+P

- $\hfill\square$ Consider an individual equityholder with equity participation α
- $\hfill\square$ Let γ_{Y} be the prob. that the raid succeeds if the equityholder tenders and and γ_{N} if he does not tender. The equityholder will tender iff

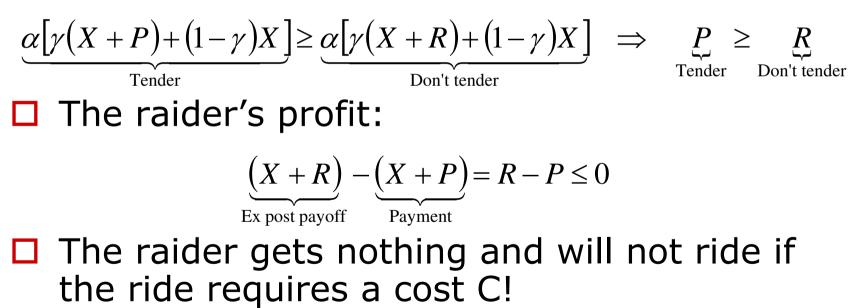
$$\underbrace{\alpha \Big[\gamma_Y \big(X + P \big) + \big(1 - \gamma_Y \big) X \Big]}_{\text{Tender}} \ge \underbrace{\alpha \Big[\gamma_N \big(X + R \big) + \big(1 - \gamma_N \big) X \Big]}_{\text{Don't tender}}$$

Corporate Finance

The free rider problem

□ Suppose that each individual equityholder is atomistic $\Rightarrow \gamma_{Y} = \gamma_{N} = \gamma$

The condition for tendering:



Toeholds

The minimal P to induce atomistic equityholders to tender is R

 $\hfill If$ the raider has a fraction β in the firm to begin with then his payoff is

$$\underbrace{(X+R)-(X+R)(1-\beta)}_{\text{Payoff with takeover}} - \underbrace{\beta X}_{\text{Absent takeover}} = \beta R$$

The takeover will take place iff βR > C, where C is the cost of takeover

Dilution

- □ If the takeover succeeds, the raider can "steal" \u03c6 from the firm (\u03c6 is implied by the firm's charter)
- □ The condition for tendering:

$$\underbrace{\alpha \Big[\gamma (X+P) + (1-\gamma) X \Big]}_{\text{Tender}} \ge \underbrace{\alpha \Big[\gamma (X+R-\phi) + (1-\gamma) X \Big]}_{\text{Don't tender}} \Rightarrow \underbrace{P}_{\text{Tender}} \ge \underbrace{R-\phi}_{\text{Don't tender}}$$

$$\Box \text{ The raider's payoff} \underbrace{X+R}_{\text{Ex post payoff}} - \underbrace{(X+R-\phi)}_{\text{Payment}} - C = \phi - C$$

$$\Box \text{ The takeover will succeed iff } \phi > C$$

Probabilistic C

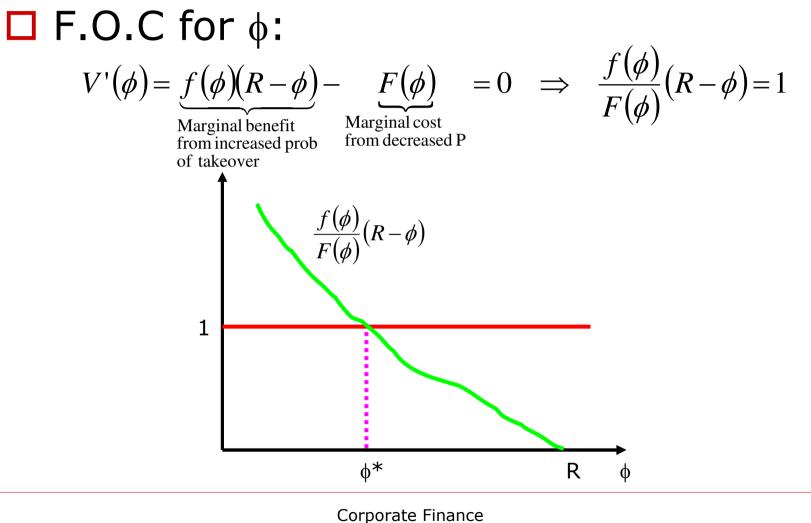
□ Suppose that C ~ $[0, \infty)$ according to F(C)

 \Box The takeover succeeds with prob. F(ϕ)

The firm's value ex ante:

$$V(\phi) = F(\phi)(X+P) + (1-F(\phi))X = X + F(\phi) \underset{R-\phi}{\overset{\frown}{\sim}} P$$

The optimal choice of $\boldsymbol{\phi}$



Stulz, JFE 1988

"Managerial Control of Voting Rights: Financing Policies and the Market for Corporate Control"

The model

□ The timing:

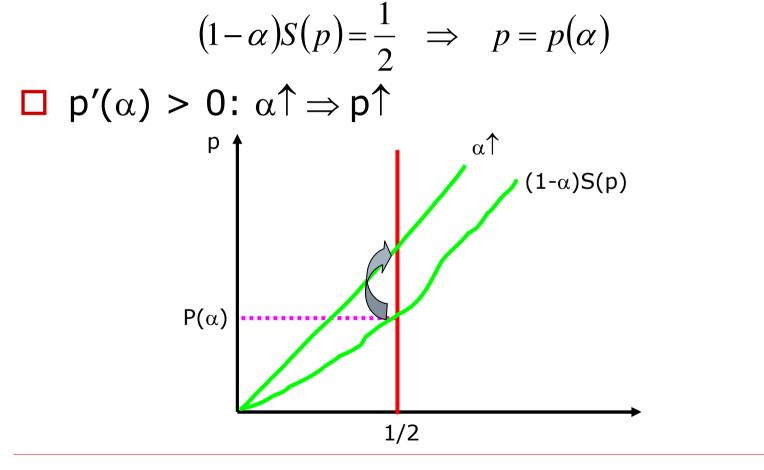
Stage 0	Stage 1	Stage 2	
The firm is established, the entrepreneur keeps equity α and issues 1- α to outsiders	may offer p to acquire	Cash flow X is realized irrespective of the takeover	

D The raider has benefits of control $B \sim [0, \infty)$

- \Box To take over the firm the raider needs $\frac{1}{2}$ of the equity
- The raider can try to acquire shares from outsiders. The supply of shares is $(1-\alpha)S(p)$, where S'(p) > 0 (more outsiders submit shares when p is higher)

Takeover

□ To induce a takeover, p needs to be



Takeover

□ The raider will take over iff $B \ge p(\alpha) \Rightarrow$ the prob. of takeover is $1-F(p(\alpha))$

□ The entrepreneur's payoff:

$$Y(\alpha) = \underbrace{\alpha X}_{\text{Retained shares}} + \underbrace{B_E F(p(\alpha))}_{\text{Private benefits}} + \underbrace{(1-\alpha) [X + (1-F(p(\alpha)))p(\alpha)]}_{\text{Sold shares}}$$
$$= X + B_E F(p(\alpha)) + (1-\alpha) (1-F(p(\alpha)))p(\alpha)$$

The optimal choice of $\boldsymbol{\alpha}$

F.O.C for α :

$$Y'(\alpha) = \underbrace{\left[B_E - (1 - \alpha)p(\alpha)\right]f(p(\alpha))p'(\alpha)}_{\text{Effect on the prob. of takeover}} + \underbrace{\left(1 - \alpha\right)\left(1 - F(p(\alpha))\right)p'(\alpha)}_{\text{Effect on the price of sold shares}} - \underbrace{\left(1 - F(p(\alpha))\right)p(\alpha)}_{\text{Quantity effect}}\right)$$
$$= 0$$

 $\label{eq:constraint} \square \quad \text{When } \alpha \to \frac{1}{2} \text{, then } (1\text{-}\alpha)S(p) = \frac{1}{2} \text{ iff } S(p) \to 1 \Rightarrow p \to \infty \text{ and } F(p) \to 1:$

$$Y'(1/2) = \left[B_E - \frac{p(1/2)}{2} \right] f(p(1/2))p'(1/2) < 0$$

Corporate Finance

The optimal choice of $\boldsymbol{\alpha}$

\Box When $\alpha = 0$:

$$Y'(0) = \underbrace{\left[B_{E} - p(0)\right]f(p(0))p'(0)}_{\text{Effect on the prob. of takeover}} + \underbrace{\left(1 - F(p(0))\right)p'(0)}_{\text{Price effect}} - \underbrace{\left(1 - F(p(0))\right)p(0)}_{\text{Ownership effect}}\right)$$
$$= \begin{bmatrix}B_{E} - p(0)\end{bmatrix}f(p(0))p'(0) + \underbrace{\left(1 - F(p(0))\right)(p'(0) - p(0))}_{\text{Ownership effect}}\right)$$

□ If p'(0) > p(0) then y'(0) > 0 so $\alpha^* > 0$

Israel, JF 1991

"Capital Structure and the Market for Corporate Control: The Defensive Role of Debt Financing"

The model

□ The timing:

Stage 0	Stage 1	Stage 2	
The firm is established by an entrepreneur and issues debt with face value D	A raider shows up and may takeover the firm	Cash flow X is realized and debt is due	I

□ The value of the firm under the entrepreneur is 0

- **D** The value of the firm under the raider is R \sim [0, ∞) with mean ER
- \square If a takeover takes place, R is split between the entrepreneur and the raider in proportions γ and $1-\gamma$

Analysis

- □ All-equity firm:
 - The raider comes, takes over the firm and pays γER
- □ Leveraged firm:
 - The raider takes over the firm iff R > D and pays the entrepreneur γ(R-D)
 - If R < D there is no takeover; since the firm is worth 0 under the entrepreneur, debtholders receive nothing

The choice of debt

□ The value of the firm:

$$V(D) = \int_{D}^{\infty} \gamma(R - D) dF(R) + \int_{D}^{\infty} D dF(R)$$

Equity

□ The f.o.c for D:

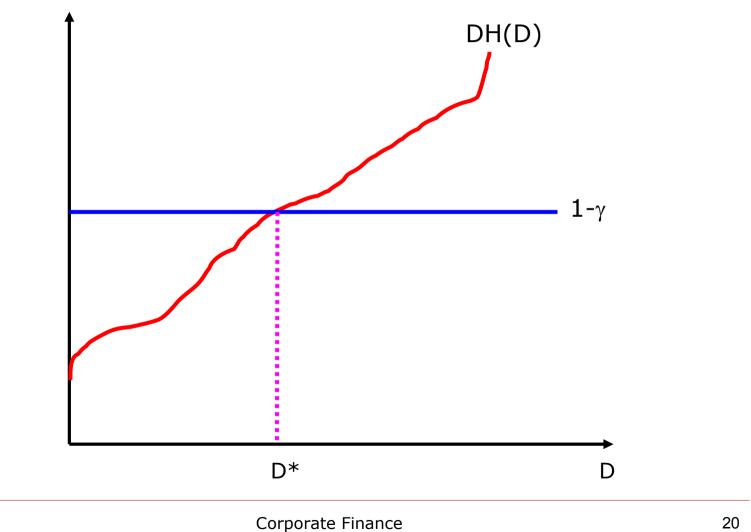
$$V'(D) = -\int_{D}^{\infty} \gamma dF(R) + \int_{D}^{\infty} dF(R) + Df(D)$$
$$= -(1 - \gamma)(1 - F(D)) + Df(D)$$
$$= 0$$

The choice of debt

- □ Rewriting f.o.c: $\frac{Df(D)}{1-F(D)} \equiv DH(D) = 1 - \gamma$
- □ At the optimum,
 D* > 0
 D* < ∞

□ Comparative stats: • $\gamma^{\uparrow} \Rightarrow D\downarrow$

Illustrating the first-order conditions



Illustrating the model

