Corporate Finance: Agency models of capital structure

Yossi Spiegel Recanati School of Business

Jensen and Meckling, JFE 1976

The agency cost of outside equity

The investment model

The timing:

П

П

Internal financing

□ F.O.C for the entrepreneur's problem:

Internal financing

□ The entrepreneur's payoff at the optimum:

$$U(I^*) = V(I^*) - I^* + R$$

But what if I* > R? In that case the entrepreneur must have external financing

Debt financing

The entrepreneur issues debt with face value D to raise I*- R upfront

Cash flow ex ante

□ The entrepreneur's payoff:

$$U(I,D) = \underbrace{V(I) - D}_{\text{Payoff ex post}} + \underbrace{\underbrace{R + (I * - R) - I}_{\text{Perks}}}_{\text{Perks}}$$

- \Box U(I,D) is maximized at I* (the firm invests optimally)
- Debt is safe: ex post the firm has $V(I^*) > I^* > I^* R \Rightarrow D^* = I^* R$
- □ The entrepreneur's payoff:

$$U(I^*, D^*) = V(I^*) - D^* + R + (I^* - R) - I^*$$

= V(I^*) - I^* + R

Equity financing with commitment

- The entrepreneur issues equity with equity participation 1-α (the entrepreneur keeps α) and commits to invest I*
- □ To raise I*-R:

$$\underbrace{(1-\alpha)V(I^*)}_{E^*} = I^* - R \quad \Rightarrow \quad \alpha^* = 1 - \frac{I^* - R}{V(I^*)}.$$

□ The entrepreneur's payoff:

$$U(I^*, \alpha^*) = \underbrace{\alpha^* V(I^*)}_{\text{Ex post payoff}} + \underbrace{E^* + R - I^*}_{\text{Perks}}$$
$$= V(I^*) - I^* + R$$

Equity financing without commitment

- The entrepreneur issues equity with equity participation 1-α, but cannot commit to invest I*
- After receiving E, but before choosing I, the entrepreneur's payoff:

$$U(I,\alpha) = \underbrace{\alpha V(I)}_{\text{Ex post payoff}} + \underbrace{E+R-I}_{\text{Perks}}$$

Equity financing without commitment

□ F.O.C for the entrepreneur's problem: $U'(I,\alpha) = \alpha V'(I) - 1 = 0 \implies \alpha V'(I^{**}) = 1.$ 1 V'(I)αV'(I) **T**** T* We get underinvestment $\Box \alpha \downarrow$ (more outside equity) $\Rightarrow I^* \downarrow$ (more underinvestment)

The agency cost of outside equity

□ The entrepreneur's payoff:

$$U(I^{**}, \alpha) = \alpha V(I^{**}) + E^{**} - I^{**} + R$$

= $\alpha V(I^{**}) + (1 - \alpha)V(I^{**}) - I^{**} + R$
= $V(I^{**}) - I^{**} + R$

□ The entrepreneur's payoff with commitment:

$$U(I^*, \alpha) = V(I^*) - I^* + R$$

□ By revealed preferences (and since $I^{**} < I^*$):

$$V(I^*) - I^* + R > V(I^{**}) - I^{**} + R$$

The entrepreneur bears the cost of underinvestment (outside investors break even)

The optimal choice of $\boldsymbol{\alpha}$

D How does α affect U(I**, α)?

 $\hfill The entrepreneur will raise <math display="inline">\alpha$ up to the point where

$$I^{**} = R + \underbrace{(1-\alpha)V(I^{**})}_{E^{**}}$$

 $\square E^{**}=0 \text{ at } \alpha = 0 \text{ (since then } I^{**}=0\text{) and at } \alpha = 1 \Rightarrow E^{**} \text{ is inverse U-shaped}$

The optimal choice of $\boldsymbol{\alpha}$

□ The entrepreneur's budget constraint:

 \Box The relevant sol'n is with the maximal α

The effort model

The timing:

П

П

Internal financing

□ F.O.C for the entrepreneur's problem:

Internal financing

□ The entrepreneur's payoff at the optimum:

$$U(e^*) = V(e^*) - e^*$$

 \Box But what if I > R?

□ Debt financing: debt is safe so D*=I-R

Equity financing without commitment

□ The entrepreneur issues equity with equity participation $1-\alpha$

After receiving E, but before choosing e, the entrepreneur's payoff is:

$$U(e,\alpha) = \alpha V(e) - e$$

Equity financing without commitment

□ F.O.C for the entrepreneur's problem:

We get underinvestment

Corporate Finance

The agency cost of outside equity

□ The entrepreneur's payoff:

$$U(e^{**},\alpha) = \alpha V(e^{**}) - e^{**}$$

□ The entrepreneur's payoff with commitment:

$$U(e^*,\alpha) = \alpha V(e^*) - e^*$$

□ By revealed preferences (and since $e^{**} < e^{*}$):

$$\alpha V(e^*) - e^* > \alpha V(e^{**}) - e^{**}$$

The entrepreneur bears the cost of underinvestment (outside investors break even)

The optimal choice of $\boldsymbol{\alpha}$

 \Box How does α affect U(e**, α)?

$$\frac{\partial U(e^{**},\alpha)}{\partial \alpha} = V(e^{**}) + \underbrace{\left(\alpha V'(e^{**}) - 1\right)}_{=0} \frac{\partial e^{**}}{\partial \alpha} > 0$$

 \square The entrepreneur will raise α up to the point where

$$I = R + \underbrace{(1 - \alpha)V(e^{**})}_{E^{**}}$$

 $\square E^{**}=0 \text{ at } \alpha = 0 \text{ (since then } e^{**}=0\text{) and at } \alpha = 1 \Rightarrow E^{**} \text{ is inverse U-shaped}$

The optimal choice of $\boldsymbol{\alpha}$

□ The entrepreneur's budget constraint:

 \square The relevant sol'n is with the maximal α

Jensen and Meckling, JFE 1976

The asset substitution problem

A simple example

- Consider a box with two sealed envelopes: one with \$100 and the with \$0
- You can either pick one envelop from the box or receive \$70 for sure what would you do?
- □ Now suppose you owe someone \$50 out of your gains
- □ If you take \$70, your payoff is 70 50 = 20
- If you pick one of the sealed envelops then you either have \$100 - \$50 = \$50, or you pick the empty envelop and your payoff is 0 because you cannot pay the \$50 ⇒ your expected payoff is (\$0+\$50)/2 = \$25
- □ The lottery is better even though its NPV is only \$50

The model

□ Two projects:

- Safe project with return Z
- Risky project with return X ~ [0, ∞)

□ The firm has debt with face value D

The management is perfect agent for equityholders – the agency problem is between equityholders and debtholders

Payoffs under the two projects

□ Equityholders' payoff with the risky project: $Y_R = \int_D^\infty (X - D) dF(X)$ □ Equityholders' payoff with the safe project:

$$Y_{S} = Max\{Z - D, 0\}$$

□ The firm surely chooses the risky project if $Z \le D \Rightarrow$ assume that Z > D. Hence

$$Y_S = Z - D$$

Comparing the two projects

 $\Box \text{ The safe project is better iff:}$ $Y_{S} > Y_{R} \iff Z > X^{C}(D) \equiv D + \int_{D}^{\infty} (X - D) dF(X)$

□ Properties of X^C(D): $\frac{\partial X^{C}(D)}{\partial D} = 1 - \int_{D}^{\infty} dF(X) = 1 - (1 - F(D)) = F(D)$ $X^{C}(0) = \int_{0}^{\infty} X dF(X) = \hat{X}$

Choice of projects with leverage

$\square X^{C}(D) > \hat{X}$ for all D > 0

A leveraged firm prefers the risky project even when it is inefficient

Myers, JFE 1977

The debt overhang problem

The model

□ The timing:

Period 1	Period 1.5	Period 2
The firm is established by an entrepreneur who issues debt with face value D	The entrepreneur learns the return, X, from a project that costs I and decides whether to invest	X is realized and debt is paid

In period 1 it is common knowledge that X~[0,∞)
 Absent debt, the firm invests iff X ≥ I. The value of the firm:

$$V(0) = \int_{I}^{\infty} (X - I) dF(X)$$

Illustrating – All-equity firm

Corporate Finance

Short-term debt (due at period 1.5)

- Suppose debt has to be paid before it is time to invest
- □ If $X I \ge D$, the firm will invest
- □ If X I < D, the firm will not invest and will go bankrupt. The debtholders will invest provided that $X \ge I$
- □ The firm invests iff $X \ge I \Rightarrow$ investment is efficient

The value of the firm with shortterm debt

The value of debt: $B(D) = \int_{I}^{D+I} (X-I) dF(X) + \int_{D+I}^{\infty} DdF(X)$ The value of equity: $E(D) = \int_{D+I}^{\infty} (X-D-I) dF(X)$ The total value of the firm:

$$V(D) = \int_{I}^{D+I} (X-I) dF(X) + \int_{D+I}^{\infty} (X-I) dF(X)$$
$$= \int_{I}^{\infty} (X-I) dF(X)$$

Corporate Finance

Illustrating the debt overhang problem

Corporate Finance

Long-term debt

Suppose debt has to be paid after it is time to invest

□ If X – I ≥ D, the firm will invest

If X – I < D, the firm will not invest and will go bankrupt. The debtholders get a firm with no investment opportunities

The value of the firm with longterm debt

□ The value of debt: $B(D) = \int_{-H}^{\infty} DdF(X)$ □ The value of equity: $E(D) = \int_{-H}^{\infty} (X - D - I) dF(X)$ □ The total value of the firm: $V(D) = \int_{-H}^{\infty} (X - I) dF(X)$ □ The value is lower than under sho

The value is lower than under short-term debt. This is the debt overhang problem

Illustrating the debt overhang problem

Berkovitch and Kim, JF 1990

Overinvestment and underinvestment

The model

□ The timing:

L	Period 0	Period 1	Period 2
T b v	The firm is established by an entrepreneur who issues debt with	The cash flow X is realized and the firm invests I	Investment yields zg(I), D is due
I	ace value D		g(I)
	\Box g'(I)>0>g"(I) and g(0) = 0		
	$g'(0) = \infty$ and $g'(\infty) = \infty$		
	z~[0, ∞)		I

Excess funds: X > I

- Cash flow at the end of period 2: zg(I) + X - I
- The firm is solvent iff

$$zg(I) + X - I \ge D \implies z \ge z_1 \equiv \frac{D + I - X}{g(I)}$$

□ The expected value of equity: $E_1(D) = \int_{z_1}^{\infty} (zg(I) + X - D - I) dF(z)$

Illustrating – excess funds

Corporate Finance

Investment with excess funds

□ F.O.C for investment:

$$\frac{\partial E_1(D)}{\partial I} = \int_{z_1}^{\infty} (zg'(I) - 1) dF(z)$$

$$= g'(I) \int_{z_1}^{\infty} z dF(z) - (1 - F(z_1)) = 0$$

Rewriting:

$$g'(I) = \frac{1}{\int_{z_1}^{\infty} z dF(z)} = \frac{1}{E(z \mid z \ge z_1)}$$

Deficit: X < I

- The firm covers the deficit by issuing extra equity
- Cash flow at the end of period 2: zg(I)
 The firm is solvent iff

$$zg(I) \ge D \implies z \ge z_2 \equiv \frac{D}{g(I)}$$

The expected value of equity: $E_2(D) = \int_{z_2}^{\infty} (zg(I) - D) dF(z) - (I - X)$ Extra funds to cover the deficit

Illustrating – deficit

Investment with deficit

□ F.O.C for investment:

$$\frac{\partial E_2(D)}{\partial I} = \int_{z_2}^{\infty} zg'(I)dF(z) - 1$$
$$= g'(I)\int_{z_2}^{\infty} zdF(z) - 1 = 0$$

Rewriting:

$$g'(I) = \frac{1}{\int\limits_{z_2}^{\infty} z dF(z)}$$

The value of the firm with excess funds

$$V_{1}(D) = \int_{z_{1}}^{\infty} (zg(I) + X - D - I)dF(z)$$
Equity
$$+ \int_{0}^{z_{1}} (zg(I) + X - I)dF(z) + \int_{z_{1}}^{\infty} DdF(z)$$
Debt
$$= \int_{0}^{\infty} (zg(I) + X - I)dF(z)$$

$$= \hat{z}g(I) + X - I$$

The value of the firm with deficit

$$V_{2}(D) = \int_{\frac{z_{2}}{2}}^{\infty} (zg(I) - D)dF(z) - (I - X) + \int_{0}^{z_{2}} zg(I)dF(z) + \int_{z_{2}}^{\infty} DdF(z)$$

Equity

$$= \int_{0}^{\infty} zg(I)dF(z) - (I - X)$$

$$= \hat{z}g(I) + X - I$$

The value of the firm is exactly as in the case of excess funds

Efficient investment

$$g'(I) = \frac{1}{\int_{z_2}^{\infty} z dF(z)} > \frac{1}{\hat{z}}$$

Comparison

 \Box Deficit \Rightarrow underinvestment