Corporate Finance: The trade-off theory

Yossi Spiegel
Recanati School of Business

The main assumptions

\square The timing:

\square The entrepreneur wishes to maximize the firm's value
$\square \quad \mathrm{X} \sim\left[\mathrm{X}_{0}, \mathrm{X}_{1}\right]$; dist. function $\mathrm{f}(\mathrm{X})$ and $\operatorname{CDF} \mathrm{F}(\mathrm{X})$
\square The mean earnings are \hat{X}

The dist. function and CDF

Risky debt

The timing:
$\square \quad$ The face value of debt is D
$\square \quad$ Debt is paid in full if $X \geq D$
$\square \quad$ If $X<D$, the firm goes bankrupt
$\square \quad$ Fixed cost of bankruptcy is $C<X_{0}$ (to avoid uninteresting complications)
$\square \quad$ An obvious alternative is proportional costs: $C=c(D-X)^{+}$

Taxation

\square Corporate tax is t_{c}
\square Debt is fully deductible
\square Interest rate is r (r is the alternative that investors can get for their money)

All-equity firm: $\mathrm{D}=0$

\square The value of the firm:

$$
\begin{aligned}
& \underbrace{V(0)(1+r)}_{\text {Alternative cost }}=\underbrace{\int_{X_{0}}^{X_{1}}\left[X-t_{c} X\right] d F(X)}_{\text {Payoff from investing in the firm }} \\
& V(0)=\frac{1}{1+r} \int_{X_{0}}^{X_{1}}\left[X-t_{c} X\right] d F(X) \\
& =\frac{\left(1-t_{c}\right) \hat{X}}{1+r}
\end{aligned}
$$

Riskless debt: $\mathrm{D}<\mathrm{X}_{0}$

- Equity:

$$
\begin{aligned}
E(D) & =\frac{1}{1+r} \int_{X_{0}}^{X_{1}}\left[X-D-(X-D) t_{c}\right] d F(X) \\
& =\frac{\left(1-t_{c}\right)(\hat{X}-D)}{1+r}
\end{aligned}
$$

\square Debt: $\quad B(D)=\frac{D}{1+r}$
\square Total value: $V(D)=E(D)+B(D)=\frac{\left(1-t_{c}\right) \hat{X}+t_{c} D}{1+r}$

Riskless debt: Implications

\square Total value: $\quad V(D)=\frac{\left(1-t_{c}\right) \hat{X}+t_{c} D}{1+r}$
$\square \mathrm{t}_{\mathrm{c}}=0 \Rightarrow$ Debt is irrelevant $\Rightarrow \mathrm{M} \& \mathrm{M} 1958$
$\square \mathrm{t}_{\mathrm{c}}>0 \Rightarrow$ The firm will be all-debt $\Rightarrow \mathrm{M} \& \mathrm{M} 1963$
\square Debt benefits the firm by providing a tax shield

Risky debt: D > X_{0} Kraus and Litzenberger, JF 1973

\square Equity: $\quad E(D)=\frac{1}{1+r} \int_{D}^{X_{1}}\left[X-D-(X-D) t_{c}\right] d F(X)$
\square Debt: $\quad B(D)=\frac{1}{1+r} \int_{X_{0}}^{D}[X-C] d F(X)+\frac{1}{1+r} \int_{D}^{X_{1}} D d F(X)$
\square Total value:

$$
\begin{aligned}
V(D) & =\frac{1}{1+r} \int_{X_{0}}^{D}[X-C] d F(X)+\frac{1}{1+r} \int_{D}^{X_{1}}\left[X-(X-D) t_{c}\right] d F(X) \\
& =\frac{\hat{X}-C F(D)}{1+r}-\frac{1}{1+r} \int_{D}^{X_{1}}(X-D) t_{c} d F(X)
\end{aligned}
$$

First-order conditions

$$
\begin{aligned}
V^{\prime}(D) & =-\frac{C f(D)}{1+r}+\frac{1}{1+r}(D-D) t_{c} f(D)+\frac{1}{1+r} \int_{D}^{X_{1}} t_{c} d F(X) \\
& =-\frac{C f(D)}{1+r}+\frac{1}{1+r} t_{c}(1-F(D))=0
\end{aligned}
$$

\square Simplifying:

$$
C f(D)=t_{c}(1-F(D)) \Rightarrow H(D) \equiv \frac{f(D)}{1-F(D)}=\frac{t_{c}}{C}
$$

\square Properties of $H(D): H^{\prime}(D)>0, H\left(X_{1}\right)=\infty$

Hazard rate - Uniform dist.

$\square F(X)=\left(X-X_{0}\right) /\left(X_{1}-X_{0}\right)$
$\square f(x)=1 /\left(X_{1}-X_{0}\right)$

$$
\begin{aligned}
& H(D) \equiv \frac{f(X)}{1-F(X)}=\frac{\frac{1}{X_{1}-X_{0}}}{1-\frac{X-X_{0}}{X_{1}-X_{0}}}=\frac{1}{X_{1}-X} \\
& \Rightarrow \mathrm{H}^{\prime}(\mathrm{X})>0
\end{aligned}
$$

Hazard rate - Exponential dist.

$\square F(X)=1-e^{-\lambda x}$
$\square f(x)=\lambda e^{-\lambda x}$

$$
\begin{aligned}
& \quad H(D) \equiv \frac{f(X)}{1-F(X)}=\frac{\lambda e^{-\lambda x}}{1-\left(1-e^{-\lambda x}\right)}=\lambda \\
& \Rightarrow \mathrm{H}^{\prime}(\mathrm{X})=0
\end{aligned}
$$

Illustrating the first-order conditions

Illustrating M\&M $1958\left(C=t_{c}=0\right)$

Illustrating M\&M $1963\left(C=0, t_{c}>0\right)$

Illustrating K\&L $1973\left(\mathrm{C}>0, \mathrm{t}_{\mathrm{c}}>0\right)$

DeAngelo and Masulis, JFE 1980 Tax code

DeAngelo and Masulis, JFE 1980 Payoffs

State of nature	Debt- holders	Equity-holders	IRS	Total
$\mathrm{X}<\mathrm{D}$	X	0	0	X
$\mathrm{D}<\mathrm{X}<\mathrm{D}+\mathrm{S}$	D	$\mathrm{X}-\mathrm{D}$	0	X
$\mathrm{D}+\mathrm{S}<\mathrm{X}<$ $\mathrm{D}+\mathrm{S}+\mathrm{G} / \theta \mathrm{t}_{\mathrm{c}}$	D	$\mathrm{X}-\mathrm{D}-\mathrm{t}_{\mathrm{c}}(\mathrm{X}-\mathrm{D}-\mathrm{S})+\theta \mathrm{t}_{\mathrm{c}}(\mathrm{X}-\mathrm{D}-\mathrm{S})$	$\mathrm{t}_{\mathrm{c}}(1-\theta)(\mathrm{X}-\mathrm{D}-\mathrm{S})$	X
$\mathrm{X}>$ $\mathrm{D}+\mathrm{S}+\mathrm{G} / \theta \mathrm{t}_{\mathrm{c}}$	D	$\mathrm{X}-\mathrm{D}-\mathrm{t}_{\mathrm{c}}(\mathrm{X}-\mathrm{D}-\mathrm{S})+\mathrm{G}$	$\mathrm{t}_{\mathrm{c}}(\mathrm{X}-\mathrm{D}-\mathrm{S})-\mathrm{G}$	X

DeAngelo and Masulis, JFE 1980 Equity and debt values

$$
\begin{aligned}
E(D)= & \frac{1}{1+r} \int_{D}^{D+S}[X-D] d F(X)+\frac{1}{1+r} \int_{D+S}^{D+S+G / \theta_{c}}\left[X-D-t_{c}(1-\theta)(X-D-S)\right] d F(X) \\
& +\frac{1}{1+r} \int_{D+S+G / \theta_{c}}^{X_{1}}\left[X-D-t_{c}(X-D-S)+G\right] d F(X) \\
= & \frac{1}{1+r} \int_{D}^{X_{1}}[X-D] d F(X)-\frac{1}{1+r} \int_{D+S}^{X_{1}} t_{c}(X-D-S) d F(X) \\
& +\frac{1}{1+r} \int_{D+S}^{D+S+G / \theta_{c}} t_{c} \theta(X-D-S) d F(X)+\frac{1}{1+r} \int_{D+S+G / \theta_{c}}^{X_{1}} G d F(X) \\
B(D)= & \frac{1}{1+r} \int_{X_{0}}^{D} X d F(X)+\frac{1}{1+r} \int_{D}^{X_{1}} D d F(X)
\end{aligned}
$$

DeAngelo and Masulis, JFE 1980 Firm value

$$
\begin{aligned}
V(D)= & \frac{1}{1+r} \int_{X_{0}}^{X_{1}} X d F(X)-\frac{1}{1+r} \int_{D+S}^{X_{1}} t_{c}(X-D-S) d F(X) \\
& +\frac{1}{1+r} \int_{D+S}^{D+S+G / \theta_{c}} t_{c} \theta(X-D-S) d F(X)+\frac{1}{1+r} \int_{D+S+G / \theta_{c}}^{X_{1}} G d F(X) \\
V^{\prime}(D) & =\frac{1}{1+r} \int_{D+S}^{X_{1}} t_{c} d F(X)-\frac{1}{1+r} \int_{D+S}^{D+S+G / \theta_{c}} t_{c} \theta d F(X)=0 \\
\Rightarrow & 1-F(D+S)=\theta\left[F\left(D+S+G / \theta t_{c}\right)-F(D+S)\right]
\end{aligned}
$$

