Corporate Finance: Capital structure and PMC

Yossi Spiegel Recanati School of Business

Brander and Lewis, AER 1986

"Oligopoly and Financial Structure: The Limited Liability Effect"

Cournot duopoly with differentiated products

Two firms produce differentiated products for which the inverse demand functions are

$$p_1 = A - q_1 - \gamma q_2$$
 $p_2 = A - q_2 - \gamma q_1$

 \square γ reflects the "degree of product differentiation"

- $\gamma = 1$ the products are perfect substitutes
- $0 < \gamma < 1$ the products are imperfect substitutes
- $\gamma = 0$ the products are unrelated
- $\gamma < 0$ the products are complements
- □ Both firms have a constant marginal cost k
- The profit functions: $\pi_1 = (p_1 k)q_1, \qquad \pi_2 = (p_2 k)q_2$

The Nash equilibrium

F.o.c for firm 1:

$$\frac{\partial \pi_1}{\partial q_1} = \underbrace{A - q_1 - \gamma q_2 - q_1}_{\text{Marginal revenue}} - k = A - 2q_1 - \gamma q_2 - k = 0$$

- □ The best-response function of firm 1 $q_1 = BR(q_2) = \frac{A - k - \gamma q_2}{2}$
- The best response function of firm 2 is analogous

Gaining strategic advantage with cost reduction from k to k'

The limited liability effect

- **D** Marginal cost is c_H with prob. α or c_L with prob. $1-\alpha$ (oil prices fluctuate)
- □ The firm chooses quantity <u>before</u> knowing if cost is high or low (an airline determines its flight schedule in advance and buys fuel on the spot market)
- Expected profit: $E\pi = \alpha(p c_H)Q + (1-\alpha)(p c_L)Q$
- □ The firm issues debt with face value D that can be repaid in full only if cost is c_L : D > (p-c_H)Q
- □ If cost is c_H , the firm goes bankrupt; due to limited liability equityholders get a payoff of 0
- The firm acts on behalf of equityholders and therefore maximizes: $(1-\alpha)(p - c_L)Q$
- **D** The firm behaves as if its cost is c_L rather than $\alpha c_H + (1-\alpha)c_L$
 - The firm gains a strategic advantage over rivals if strategies are strategic substitutes
 - The strategy is costly: the firm goes bankrupt with probability α

The general model

The timing:

Period 1	Period 2
Two rival firms issue debt with faces values D ¹ and D ²	The two firms choose output levels q_1 and q_2
	Profits are $R^1(q_1,q_2,z)$ and $R^2(q_1,q_2,z)$

 \square Rⁱ(q_i,q_j,z) has a unique maximizer q_i

- \square Rⁱ_j(q_i,q_j,z) < 0 firm j has a negative externality on firm i
- $\square R_{z}^{i}(q_{i},q_{j},z) > 0: z \text{ is a positive shock (either supply of demand shock)}$
- \Box z ~ [0, ∞) according to f(z) with CDF F(z)

Examples

Cost shocks: C_i = C(q_i)/z C_i = (1-z)C(q_i), z ~ [0, 1]

Demand shocks p_i = zp_i(q_i), where p_i = A-q_i-γq_j p_i = Az-q_i-γq_j

All-equity firm

□ Firm i chooses q_i to maximize its expected profit taking as given q_j

$$\underset{q_i}{Max} V^i(q_i, q_j, z) = \int_{0}^{\infty} R^i(q_i, q_j, z) dF(z)$$

 $\hfill\square$ The best response of firm i against q_j is defined by

$$V_{i}^{i} = \int_{0}^{\infty} R_{i}^{i} (q_{i}, q_{j}, z) dF(z) = 0$$

□ The NE is defined implicitly by the system:

$$V_i^i(q_i, q_j, z) = 0$$
 $V_j^j(q_i, q_j, z) = 0$

Leveraged firm

□ The firm is solvent iff:

The problem of a leveraged firm

□ Firm i's problem:

$$\underset{q_i}{Max} V^i(q_i, q_j, z) = \int_{z_i^*}^{\infty} (R^i(q_i, q_j, z) - D^i) dF(z)$$

 \Box The best response of firm i against q_j is defined by

$$V_{i}^{i}(q_{i},q_{j},z) = -\underbrace{\left(R^{i}(q_{i},q_{j},z_{i}^{*}) - D^{i}\right)}_{=0}f(z_{i}^{*})\frac{\partial z_{i}^{*}}{\partial q_{i}} + \int_{z_{i}^{*}}^{\infty}R_{i}^{i}(q_{i},q_{j},z)dF(z) = 0$$

□ The NE is defined implicitly by the system:

$$V_i^i(q_i, q_j, z) = 0$$
 $V_j^j(q_i, q_j, z) = 0$

The effect of leverage on the firm's strategy

 \Box To find the effect of D_i on q_i, fully differentiate f.o.c.:

$$\underbrace{V_{ii}^{i}(q_{i},q_{j},z)}_{(-) \text{ by s.o.c}} \partial q_{i} + V_{iD}^{i}(q_{i},q_{j},z_{i}*) \partial D_{i} = 0 \quad \Rightarrow \quad \frac{\partial q_{i}}{\partial D_{i}} = \frac{V_{iD}^{i}(q_{i},q_{j},z)}{-V_{ii}^{i}(q_{i},q_{j},z)}$$

□ The change in firm i's best response function depends on the sign of $V^{i}_{iDi}(q_i,q_j,z)$

$$V_{iD}^{i}(q_{i},q_{j},z) = \frac{\partial}{\partial D_{i}} \int_{z_{i}^{*}}^{\infty} R_{i}^{i}(q_{i},q_{j},z) dF(z)$$

$$= -R_i^{i} (q_i, q_j, z_i *) f(z_i *) \frac{\partial \overline{z_i}}{\partial D_i}$$

The sign of $R^{i}_{i}(q_{i},q_{j},z_{i}^{*})$

- □ Suppose that $R^{i}_{iz} > 0$ the shock z boosts the marginal profit
- □ Recall that total area between the horizontal axis and the graph of $R^{i}_{i}(q_{i},q_{j},z_{i})$ sums up to 0

Effect of Dⁱ

- □ If $R_{iz}^i > 0$, then $q^i \uparrow$ with $D_i -$ firm i becomes more aggressive when it issues debt
- □ Why?
 - Due to limited liability, firm i ignores low states of z in which it goes bankrupt and hence behaves as if z was on average high
 - When Rⁱ_{iz} > 0, the firm produces more when z is high
- In the Cournot model, when firm i is more aggressive, firm j is softer and firm i enjoys a strategic advantage vis-à-vis firm j

The choice of Dⁱ

□ The value of debt:

$$B_{i}(D_{i}) = \int_{0}^{z_{i}^{*}} R^{i}(q_{i}^{*}, q_{j}^{*}, z) dF(z) + \int_{z^{*}}^{\infty} D_{i} dF(z)$$

□ The value of equity:

$$E_{i}(D_{i}) = \int_{z_{i}^{*}}^{\infty} \left(R^{i}(q_{i}^{*}, q_{j}^{*}, z) - D_{i} \right) dF(z)$$

□ The total value of the firm:

$$Y_{i}(D_{i}) = \int_{0}^{\infty} R^{i}(q_{i}^{*}, q_{j}^{*}, z) dF(z)$$

The optimal choice of D_i

$$Y_{i}^{*}(D_{i}) = \int_{0}^{\infty} \left[R_{i}^{i}(q_{i}^{*}, q_{j}^{*}, z) \frac{\partial q_{i}^{*}}{\partial D_{i}^{*}} + R_{j}^{i}(q_{i}^{*}, q_{j}^{*}, z) \frac{\partial q_{j}^{*}}{\partial D_{i}^{*}} \right] dF(z)$$

$$= \int_{0}^{z_{i}^{*}} R_{i}^{i}(q_{i}^{*}, q_{j}^{*}, z) dF(z) \frac{\partial q_{i}^{*}}{\partial D_{i}^{*}} + \int_{z_{i}^{*}}^{\infty} R_{i}^{i}(q_{i}^{*}, q_{j}^{*}, z) dF(z) \frac{\partial q_{i}^{*}}{\partial D_{i}^{*}}$$

$$+ \int_{0}^{\infty} R_{j}^{i}(q_{i}^{*}, q_{j}^{*}, z) dF(z) \frac{\partial q_{j}^{*}}{\partial D_{i}^{*}}$$

$$= \int_{0}^{z_{i}^{*}} R_{i}^{i}(q_{i}^{*}, q_{j}^{*}, z) dF(z) \frac{\partial q_{i}^{*}}{\partial D_{i}^{*}}$$

$$= \int_{0}^{z_{i}^{*}} R_{i}^{i}(q_{i}^{*}, q_{j}^{*}, z) dF(z) \frac{\partial q_{i}^{*}}{\partial D_{i}^{*}} + \int_{0}^{\infty} R_{j}^{i}(q_{i}^{*}, q_{j}^{*}, z) dF(z) \frac{\partial q_{j}^{*}}{\partial D_{i}^{*}}$$

$$= \int_{0}^{z_{i}^{*}} R_{i}^{i}(q_{i}^{*}, q_{j}^{*}, z) dF(z) \frac{\partial q_{i}^{*}}{\partial D_{i}^{*}} + \int_{0}^{\infty} R_{j}^{i}(q_{i}^{*}, q_{j}^{*}, z) dF(z) \frac{\partial q_{j}^{*}}{\partial D_{i}^{*}}$$

The optimal choice of D_i

- □ The second term is the positive strat. effect
- □ The first term is the negative direct effect: debt distorts the firm's choice of quantity
- $\label{eq:relation} \begin{array}{|c|c|c|} \Box & As \ D_i \rightarrow 0 \Rightarrow z_i^{\,*} \rightarrow 0 \Rightarrow the \ negative \ direct \\ effect \ vanishes \Rightarrow Y_i'(D_i) > 0 \Rightarrow D_i^{\,*} > 0 \end{array}$

Spiegel, JEMS 1996

"The Role of Debt in Procurement Contracts"

The model

□ The timing:

Period 1	Period 2	Period 3
A firm invests k which determines the net surplus from trading with a buyer, V(k,z)	The firm issues debt with face value D	z is realized, the firm and the buyer bargain over a price, D is due
$\Box V_k(k,z) > 0 > V_k(k,z)$	V _{kk} (k,z)	z↑
\Box V _z (k,z) > 0 and	d V _{kz} (k,z) \geq 0	V(k,z)
□ z ~ U[0, 1]		k

The bargaining stage

- □ The buyer and the firm trade iff $V(k,z) \ge D$, o/w the price the buyer pays is not enough to ensure solvency
- □ Let z^* be such that $V(k,z^*) = D$
- If $V(k,z) \ge D$, the buyer makes a TIOLI with prob. γ and the firm makes an offer with prob. $1-\gamma$
- □ The firm's expected payoff when it issues debt is

$$Y(k,D) = (1-\gamma) \int_{\underbrace{z^*}}^1 (V(k,z) - D) dz + \int_{\underbrace{z^*}}^1 D dz - k$$

Equity

The choice of debt

□ The f.o.c for the firm's value:

$$Y_D(k,D) = -(1-\gamma)(1-z^*) + (1-z^*) - D\frac{\partial z^*}{\partial D}$$
$$= \gamma(1-z^*) - D\frac{\partial z^*}{\frac{\partial D}{(+)}} = 0$$

 $\Box \text{ At } D = 0, Y_D(k,z) > 0 \Rightarrow D^* > 0$

Illustrating the model

Investment

□ The firm's value as a function of k: $Y(k,D) = (1-\gamma) \int_{z^*}^{1} (V(k,z) - D^*) dz + \int_{z^*}^{1} D^* dz - k$ Equity
Equity
The f.o.c for k:

$$Y_{k}(k,D) = \underbrace{Y_{D}(k,D*)}_{=0} \underbrace{\frac{\partial D}{\partial k}}_{=0} + (1-\gamma) \int_{z^{*}}^{1} V_{k}(k,z) dz - D* \underbrace{\frac{\partial z}{\partial k}}_{(-)} - 1$$
$$= (1-\gamma) \int_{z^{*}}^{1} V_{k}(k,z) dz - D* \frac{\partial z}{\partial k} - 1 = 0$$

The effect of debt on investment

□ The marginal benefit of k:

$$(1-\gamma)\int_{z^*}^1 V_k(k,z)dz - D*\frac{\partial z^*}{\partial k}$$

$$\Box \text{ Since V(k,z^*) = D: } \frac{\partial z^*}{\partial k} = -\frac{V_k(k,z^*)}{V_z(k,z^*)} < 0$$

□ The effect of D:

$$-(1-\gamma)V_k(k,z^*)\frac{\partial z^*}{\partial k}-\frac{\partial z^*}{\partial k}-D^*\frac{\partial^2 z^*}{\partial k\partial D}$$

The effect of debt on investment

The marginal benefit of k increases with D

The firm invests more when it issues debt