Corporate Finance: Credit rationing

Yossi Spiegel
Recanati School of Business

Tirole 2006

The Theory of Corporate Finance

The model

\square The timing:

\square Effort raises the prob. of success from p_{L} to p_{H}
$\square \quad \Delta \mathrm{p} \equiv \mathrm{p}_{\mathrm{H}}-\mathrm{p}_{\mathrm{L}}$
The project is viable only if there's effort:

$$
\underbrace{p_{H} R-I}_{\text {NPV }}>0>\underbrace{p_{L} R-I+B}_{\text {NPV + Benefits }} \Rightarrow \Delta p R>B
$$

The loan agreement

\square The loan can be debt or equity (the model cannot distinguish between them)
\square Incentive compatibility (to ensure effort):
\square Creditor's individual rationality:

$$
p_{H} \underbrace{\left(R-R_{b}\right)}_{\substack{\text { Maximanal peldgable } \\ \text { income }}} \equiv p_{H} \underbrace{\left(R-\frac{B}{\Delta p}\right)}_{(+)} \geq \underbrace{I-A}_{\text {Required funds }}
$$

Credit rationing

\square Creditor's individual rationality:

$$
p_{H}\left(R-\frac{B}{\Delta p}\right) \geq I-A \Rightarrow A \geq \bar{A} \equiv \underbrace{p_{H} \frac{B}{\Delta p}-\left(p_{H}^{\text {NPV with effort }}\right.}_{(+) \text {by assumption }}
$$

\square An entrepreneur must have \bar{A} to get funds
\square When $\mathrm{A}<\overline{\mathrm{A}}$, we get credit rationing: the creditor gets too little ex post to agree to give the entrepreneur I-A
\square Credit rationing is "more severe" when B is large: there's more agency problem or MH

Entrepreneur's payoff

When $A<\bar{A}$, the project is not funded so $U=0$
$\square \quad$ When $A \geq \bar{A}$, the project is funded; if the entrepreneur has all the bargaining

$$
\begin{aligned}
& \text { power, the creditor simply breaks even: } \\
& \qquad \underbrace{p_{H} R_{l}}_{\begin{array}{c}
\text { Creditor's } \\
\text { expected } \\
\text { payoff }
\end{array}}=I-A \Rightarrow R_{l}=\underbrace{\underbrace{I-A}_{P_{H}}}_{\begin{array}{c}
\text { Min payment to } \\
\text { creditor given effort }
\end{array}}+\frac{I-A}{P_{H}}
\end{aligned}
$$

- The entrepreneur's net payoff (above and beyond A which he can consume anyway by not investing):

$$
U=p_{H}\left(R-R_{l}\right)-A=p_{H}\left(R-\frac{I-A}{p_{H}}\right)-A=\underbrace{p_{H} R-I}_{\text {NPV with effort }}
$$

\square Since the creditor breaks even, the entrepreneur captures the entire NPV

The entrepreneur's net payoff (above and beyond A) - illustration

\square The entrepreneur either gets all the NPV or nothing \Rightarrow the entrepreneur is indifferent to A above \bar{A}

Overborrowing

\square Suppose the firm can \uparrow the prob. of success by τ by investing J which it borrows from a new creditor
\square Assumption: the investment is inefficient: $J>\tau R$
\Rightarrow No point in investing if effort stays the same (investment \downarrow NPV and hence \downarrow the entrepreneur's payoff); the investment's role is to transfer value from the original creditor
\square The entrepreneur invests J only if it induces him to exert no effort (the alternative is to forgo J and exert effort):

$$
\underbrace{\left(p_{L}+\tau\right) R_{b}-J}_{\begin{array}{c}
\text { The entrepreneur's payoff } \\
\text { w/o effort when the new } \\
\text { creditor breakseven }
\end{array}}+B>\underbrace{p_{H} R_{b}}_{\begin{array}{c}
\text { No overinvestment } \\
\text { and effort }
\end{array}}
$$

Overborrowing

\square The condition for overborrowing:
\square Overborrowing is worthwhile only if it transfers enough value from the initial creditor to compensate for the resulting inefficiencies
\square If the condition holds, the initial creditor must impose a no-extra investment/loan covenant
$\square \quad R_{1} \uparrow \Rightarrow$ overborrowing is more tempting
$\square \quad$ But $R_{1}=(I-A) / p_{H}$; hence, $A \downarrow \Rightarrow R_{1} \uparrow \Rightarrow$ overborrowing is more likely when A is low and hence covenants are needed more

Debt overhang

\square Suppose the firm has initial secured debt with face value $\mathrm{D} \leq \mathrm{A}$
\square The creditor's IR constraint:
\square D makes investment less likely

Debt restructuring

\square Suppose that R is large enough so the entrepreneur can get a loan without debt but not with the debt:

$$
p_{H}\left(R-\frac{B}{\Delta p}\right)-D<I-A \leq p_{H}\left(R-\frac{B}{\Delta p}\right)
$$

\square Absent restructuring, the investment is not made and the creditor gets A
\square To induce investment D must be lowered to d such that

$$
p_{H}\left(R-\frac{B}{\Delta p}\right)-d=I-A
$$

Multiple projects

$\square \quad 2$ identical projects
\square Suppose that the entrepreneur gets R_{2} if both projects succeed and gets 0 otherwise (can also pay R_{1} is one project succeeds and R_{0} if none succeeds but R_{2} is sufficient since the entrepreneur is risk neutral)
\square Incentive compatibility:

payoff with effort without effort

$$
\underbrace{p_{H}^{2} R_{2}}_{\underbrace{\text { nntrepreneur's }} \begin{array}{l}
\text { ayof with effort } \\
\text { n both projects }
\end{array}}>\underbrace{p_{H} p_{j} p_{L} R_{2}+B}_{\begin{array}{c}
\text { Entrepreneur's payoff } \\
\text { with effort on a single }
\end{array}} \Rightarrow p_{H} \Delta p R_{2}>B
$$

\square The first IC constraint implies the second

The creditor's IR

$\square \quad$ Creditor's individual rationality (IR):
$\underbrace{p_{H}^{2} 2 R+2 p_{H}\left(1-p_{H}\right) R}_{\text {Expected return }}-\underbrace{p_{H}{ }^{2} R_{2}}_{\substack{\text { Entrepreneur's } \\ \text { payoff }}}=2 p_{H} R-p_{H}{ }^{2} R_{2} \geq 2(I-A)$
\square From entrepreneur's IC:

$$
R_{2} \geq \frac{1}{p_{H}+p_{L}} \frac{2 B}{\Delta p}
$$

\square Substituting from IC into creditor's IR:

$$
2 p_{H} R-p_{H}{ }^{2} \frac{2 B}{\left(p_{H}+p_{L}\right) \Delta p} \geq 2(I-A) \Rightarrow p_{H}\left[R-\left(\frac{p_{H}}{p_{H}+p_{L}}\right) \frac{B}{\Delta p}\right] \geq I-A
$$

The effect of multiple projects on financing

\square The condition for financing:

$$
A \geq \bar{A} \equiv I-p_{H}\left[R-\left(\frac{p_{H}}{p_{H}+p_{L}}\right) \frac{B}{\Delta p}\right]
$$

A \downarrow
Financing
is easier
Credit

rationing \quad| No |
| :--- |
| rationing |

Multiple projects with perfect correlation

\square Entrepreneur's IC:

$$
\underbrace{p_{H} R_{2}}_{\begin{array}{c}
\text { Entrepreneur's } \\
\text { payoff with effort } \\
\text { on both projects }
\end{array}}>\underbrace{p_{L} R_{2}+2 B}_{\begin{array}{c}
\text { Entrepreneur's payoff } \\
\text { without effort }
\end{array}} \Rightarrow R_{2}>\frac{2 B}{\Delta p}
$$

\square Creditor's individual rationality (IR):

$$
\underbrace{p_{H} 2 R}_{\text {Expectedrecurn }}-\underbrace{p_{H} R_{2}}_{\substack{\text { Enareperceurs's } \\ \text { papoff }}}=p_{H}\left[2 R-R_{2}\right] \geq 2(I-A)
$$

\square From entrepreneur's IC:

$$
p_{H}\left[2 R-\frac{2 B}{\Delta p}\right] \geq 2(I-A) \Rightarrow A \geq \bar{A} \equiv p_{H} \frac{B}{\Delta p}-\left(p_{H} R-I\right)
$$

The creditor's IR under perfect correlation

\square Under perfect corr. we are back to the single project case
\square Diversification helps because the projects are not perfectly correlated
\square Imperfect correlation effectively lowers B to $p_{H} B /\left(p_{L}+p_{H}\right)$

Correlation or independence?

\square Suppose the entrepreneur can choose whether projects will be correlated or independent but his choice is hidden from the creditor
\square Given R_{2}, the entrepreneur's payoff:

- Correlation:
- Independence:

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{H}} \mathrm{R}_{2} \\
& \mathrm{p}_{\mathrm{H}}{ }^{2} \mathrm{R}_{2}
\end{aligned}
$$

\Rightarrow The entrepreneur will choose perfect correlation. Why is that?
\square Asset substitution: correlation is riskier than independence. The entrepreneur is the residual claimant and likes risk

Continuous investment

$\square \quad \mathrm{I} \in[0, \infty)$ is a choice variable; the entrepreneur chooses I and whether to exert effort
$\square \quad$ Return is RI and private benefit is BI
\square IC for the entrepreneur:

$$
p_{H} R_{b}>p_{L} R_{b}+B I \quad \Rightarrow \quad R_{b}>\frac{B I}{\Delta p}
$$

\square IR for the creditor:

$$
p_{H}\left(R I-R_{b}\right) \geq I-A \quad \Rightarrow \quad p_{H}\left(R I-\frac{B I}{\Delta p}\right) \geq I-A
$$

ㅁ Rewriting:

$$
I \leq \kappa A \Rightarrow \underbrace{\kappa \equiv \frac{1}{1-p_{H} R+\frac{p_{H} B}{\Delta p}}}_{\text {multiplier }}
$$

Continuous investment - optimal investment

$\square \quad$ In a competitive capital market, the lenders must break even given their anticipation that the entrepreneur will exert effort: $\mathrm{p}_{\mathrm{H}} \mathrm{R}_{\mathrm{I}}=\mathrm{I}-\mathrm{A}$
\square The entrepreneur's utility above and beyond A:

$$
U=p_{H}\left(R I-R_{l}\right)-A=p_{H}\left(R I-\frac{I-A}{p_{H}}\right)-A=\left(p_{H} R-1\right) I
$$

\square Assumption 1: $\mathrm{p}_{\mathrm{H}} \mathrm{R}>1$ - investment has a positive NPV with effort
■ Implication: the entrepreneur would like to invest as much as he can
$\square \quad$ But if I is high, the IC constraint is violated
\square Optimal investment is determined by the multiplier equation: $\mathrm{I}=\kappa \mathrm{A}$
\square "Invest up to κ times your wealth" or "Borrow κ-1 times your wealth"

Continuous investment - multiplier

$\square \quad$ Assumption 1: $\mathrm{p}_{H} R>1$ - investment has a positive NPV with effort
\square Assumption 2: $p_{\mathrm{L}} \mathrm{R}+\mathrm{B}<1$ - investment has a negative NPV w/o effort
\square Assumption $1+2$ imply: $p_{H} R>1>p_{L} R+B \Rightarrow \Delta p R>B \Rightarrow R>B / \Delta p$
\square Assumption 3: $\mathrm{p}_{\mathrm{H}} \mathrm{R} 1-1<\mathrm{p}_{\mathrm{H}} \mathrm{B} / \Delta \mathrm{p}-\mathrm{NPV}$ is lower than the cost of MH

- Since $R>B / \Delta p$ and given Assumption 3, $\kappa>1$
\square Implication: κ is a "multiplier" - each dollar of equity leads to κ dollars of investment
$\square \quad \kappa$ is smaller if B is large

Continuous investment - leverage

\square The optimal investment is $\kappa \mathrm{A}$
\square The entrepreneur needs to borrow ($\kappa-1$)A, where

$$
\kappa-1=\frac{1}{1-p_{H} R+\frac{p_{H} B}{\Delta p}}-1=\frac{p_{H}\left(R-\frac{B}{\Delta p}\right)}{1-p_{H}\left(R-\frac{B}{\Delta p}\right)}
$$

