Corporate Finance: Asymmetric information and capital structure – signaling

Yossi Spiegel Recanati School of Business

Ross, BJE 1977

"The Determination of Financial Structure: The Incentive-Signalling Approach"

The model

□ The timing:

L	Stage 0	Stage 1	Stage 2	
Г	The firm issues debt with face value D	The capital market observes D and updates the belief about the firm's type	Cash flow is realized	1

- □ Cash flow is $x \sim U[0,T]$, where $T \in \{L,H\}$, L < H
- □ T is private info. to the firm
- **The capital market believes that** T = H with prob. γ
- □ In case of bankruptcy, the manager bears a personal loss C
- □ The manager's utility: $U = V C \times Prob.$ of bankruptcy

The full information case

□ The value of the firm when T is common knowledge:

$$V_T = \left[\int_0^D x dF(x) + \int_D^T D dF(x)\right] + \int_D^T (x - D) dF(x) = \hat{x}_T$$

U With uniform dist.: $\hat{x}_T = T/2$

□ The manager's utility:

$$U = \hat{x}_T - C \times F(D) = \hat{x}_T - C\frac{D}{T}$$

```
□ The manager will not issue debt
```

Asymmetric information

 \Box D_T* is the debt level of type T

- □ B* is the prob. that the capital market assigns to the firm being of type T
- Perfect Bayesian Equilibrium (PBE), (D_H*,D_L*,B*):
 D_H* and D_L* are optimal given B*
 B* is consistent with the Bayes rule

Bayes rule

$$P(A | B) = \frac{P(B | A)P(A)}{P(B)}$$

□ In our case, two levels of D are chosen. Suppose the probability that each type plays them is as follows:

	D_1	D ₂
Туре Н (ү)	h ₁	h ₂
Туре L (1-ү)	ا ₁	ا ₂

Having observed D_1 the capital market believes that the firm is type H with prob.:

$$P(H \mid D_1) = \frac{P(D_1 \mid H)P(H)}{P(D_1)} = \frac{h_1\gamma}{h_1\gamma + l_1(1-\gamma)}$$

In a sep. equil., $h_1 = 1$ and $l_1 = 0$. In a pooling equil., $h_1 = l_1 = 1$

Separating equilibria: $D_H^* \neq D_L^*$

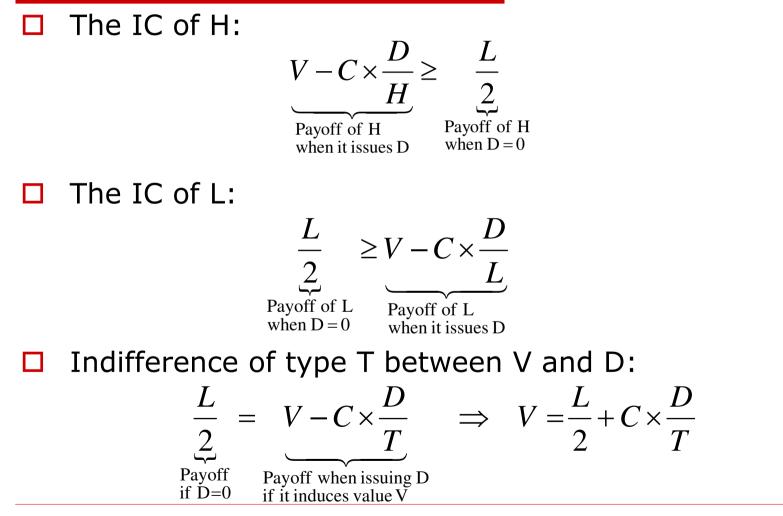
□ The belief function:

$$B^* = \begin{cases} 1 & D = D_H^* \\ 0 & D = D_L^* \\ \gamma' & o/w \end{cases}$$

□ In a separating equil., $D_L^* = 0$ because type L cannot boost V by issuing debt

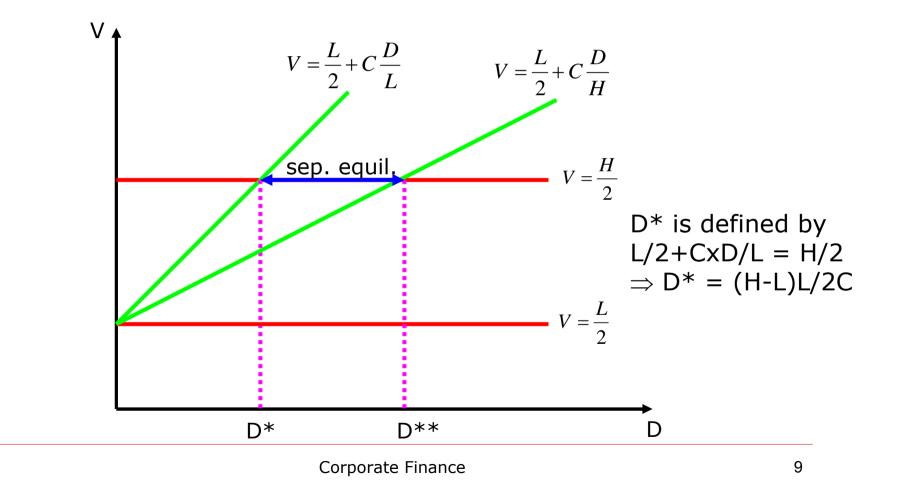
$$\Box D_{L}^{*} = 0 \Rightarrow B^{*}(0) = 0 \Rightarrow V(0) = L/2$$

Separating equilibrium



Corporate Finance

The set of separating equilibria



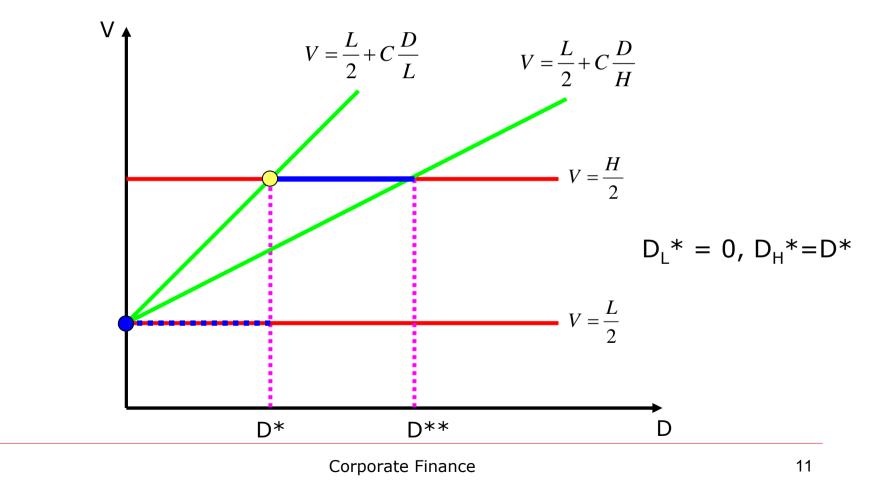
The DOM criterion

- □ $D \ge D^*$ is a dominated strategy for type L: D = 0 always guarantees L a higher payoff no matter what the capital market believes
- □ The DOM criterion:

$$B^{*} = \begin{cases} 1 & D = D_{H}^{*} \\ 0 & D = D_{L}^{*} \\ 1 & D \ge D^{*} \\ \gamma' & o / w \end{cases}$$

- □ The idea: type L will never play $D \ge D^*$ while type H might. Hence, if $D \ge D^*$, then the firm's type must be H
- □ The DOM criterion still does not determine the beliefs for $D < D^*$ and $D \neq 0$
- Under the DOM criterion: $D_L^* = 0$, $D_H^* = D^*$

Separating equilibria under the DOM criterion



Pooling equilibria: $D_{H}^{*} = D_{L}^{*} = D_{p}^{*}$

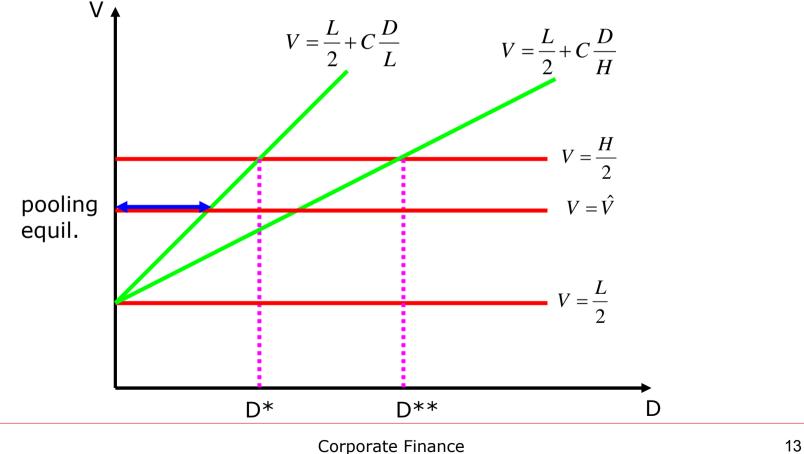
□ The belief function:

$$B^* = \begin{cases} \gamma & D = D_p * \\ \gamma' & o / w \end{cases}$$

□ In a pooling equil., the choice of D_p^* is uninformative; hence

$$\hat{V} = \gamma \times \frac{H}{2} + (1 - \gamma) \times \frac{L}{2}$$

The set of pooling equilibria



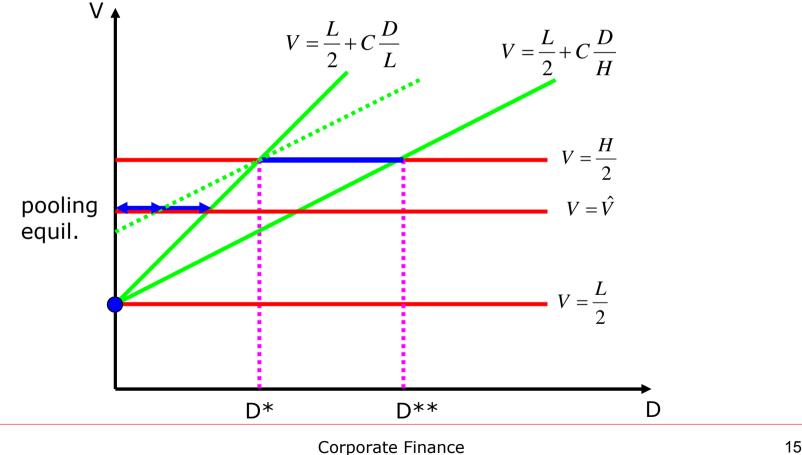
The DOM criterion

□ The DOM criterion:

$$B^* = \begin{cases} \gamma & D = D_p^* \\ 1 & D \ge D^* \\ \gamma' & o / w \end{cases}$$

The DOM criterion eliminates some pooling equilibria but not all

The set of pooling equilibria



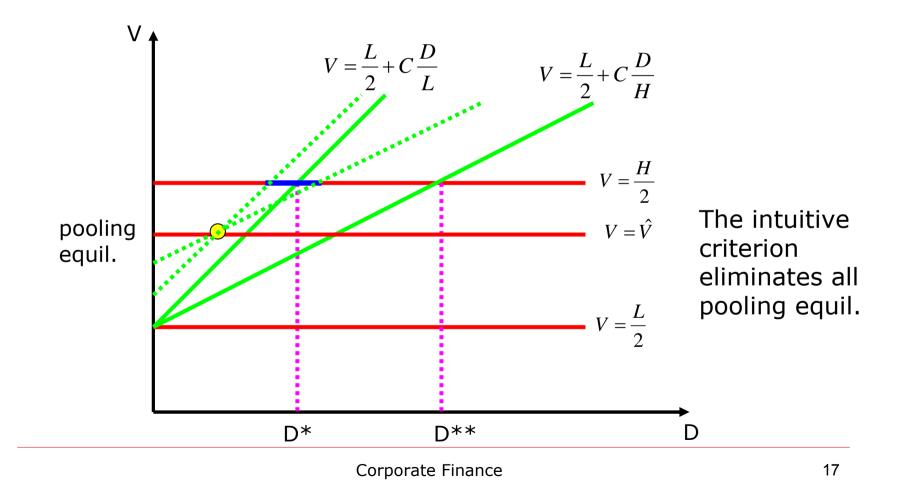
The intuitive criterion

- □ Due to Cho and Kreps, QJE 1987
- Fix a equilibrium (D_L^*, D_H^*) and consider a deviation from this equilibrium to D'. If the deviation never benefits type x (even if it induces the most favorable beliefs by the capital market) but can benefit type y, then the deviation was played by type y
- □ The intuitive criterion:

$$B^* = \begin{cases} \gamma & D = D_p * \\ 1 & D \text{ is dominated by } D_p * \\ \gamma' & o / w \end{cases}$$

□ The intuitive criterion still does not determine the beliefs everywhere

The set of pooling equilibria under the intuitive criterion



Conclusions

- □ The only equilibrium which survives the intuitive criterion is $D_L^* = 0$ and $D_H^* = D^*$
- This equilibrium is the Pareto undominated separating equilibrium and it is called the "Riley outcome"
- Debt can be used as a signal of high cash flow
- □ The debt of type H:

$$\frac{L}{2} + C\frac{D}{L} = \frac{H}{2} \implies D^* = \frac{(H-L)L}{2C}$$

 \square D* \uparrow when L \uparrow , H-L \uparrow , and C \downarrow , D* is independent of γ !

Leland and Pyle, JF 1977

"Informational asymmetries, financial structure, and financial intermediation"

The model

□ The timing:

L	Stage 0	Stage 1	Stage 2	
Γ	An entrepreneur sell a fraction 1-α of the firm to outside equityholders	The capital market observes 1-α and updates the belief about the firm's type	Cash flow is realized	

- □ Cash flow is $x \sim [0,\infty)$, with $Ex = x_T$ and $Var(x) = \sigma^2$, where $T \in \{L,H\}$, $x_L < x_H$
- □ T is private info. to the firm
- **D** The capital market believes that T = H with prob. γ
- □ The entrepreneur's expected utility:

$$EU(W_T) = EW_T - \frac{b}{2} \times Var(W_T) \qquad W_T = \alpha x + (1 - \alpha)V$$

The full information case

D The variance of W_T :

$$Var(W_T) = E(\alpha x + (1 - \alpha)V - EW_T)^2$$
$$= E(\alpha (x - x_T))^2 = \alpha^2 \sigma^2$$

□ The entrepreneur's expected utility:

$$EU(W_T) = \underbrace{\alpha x_T + (1 - \alpha)V}_{EW_T} - \frac{b}{2} \times \underbrace{\alpha^2 \sigma^2}_{Var(x)}$$

Under full info., $V = x_T$:

$$EU(W_T) = x_T - \frac{b}{2} \times \alpha^2 \sigma^2$$

 $\Rightarrow \alpha^* = 0 \Rightarrow$ The entrepreneur will sell the entire firm

Why? Because the entrepreneur is risk-averse and the capital market is risk-neutral

Asymmetric information

 $\square \alpha_T^*$ is the equity participation of type T

- □ B* is the prob. that the capital market assigns to the firm being of type T
- Perfect Bayesian Equilibrium (PBE), (α_H*, α_L*, B*):
 α_H* and α_L* are optimal given B*
 B* is consistent with the Bayes rule

Separating equilibria: $\alpha_{H}^{*} \neq \alpha_{L}^{*}$

□ The belief function:

$$B^* = \begin{cases} 1 & \alpha = \alpha_H^* \\ 0 & \alpha = \alpha_L^* \\ \gamma' & o/w \end{cases}$$

□ In a separating equil., $\alpha_L^* = 0$ because type L cannot boost V by keeping equity

$$\Box \ \alpha_{L}^{*} = 0 \Rightarrow \mathsf{B}^{*}(0) = 0 \Rightarrow \mathsf{V}(0) = \mathsf{x}_{L}$$

Separating equilibrium

□ The IC of H:

$$\alpha x_{H} + (1 - \alpha) V - \frac{b}{2} \alpha^{2} \sigma^{2} \geq 0$$

Payoff of H
when
$$\alpha = 0$$

 X_L

Payoff of H when he keeps a fraction α of the firm

□ The IC of L:

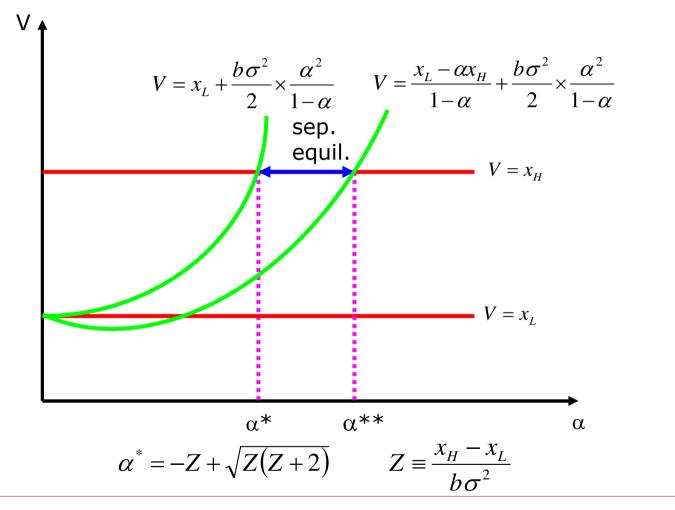
$$\underbrace{x_L}_{\text{Payoff of L}} \geq \underbrace{\alpha x_L + (1 - \alpha) V - \frac{b}{2} \alpha^2 \sigma^2}_{\text{Payoff of L when he keeps a fraction } \alpha \text{ of the firm}}$$

I Indifference of type T between V and α :

$$\underbrace{x_L}_{\substack{\text{Payoff}\\\text{if }\alpha=0}} = \underbrace{\alpha x_T + (1-\alpha)V - \frac{b}{2}\alpha^2 \sigma^2}_{\substack{\text{Payoff when keeping a fraction }\alpha\\\text{of the firm if it induces a value V}} \implies V = \frac{x_L - \alpha x_T}{1-\alpha} + \frac{b\sigma^2}{2} \times \frac{\alpha^2}{1-\alpha}$$

Corporate Finance

The set of separating equilibria



Corporate Finance

The Riley outcome

□ Using L's IC, the ownership share of type H is:

$$\underbrace{x_L}_{\alpha} = \alpha x_L + (1 - \alpha) x_H - \frac{b}{2} \alpha^2 \sigma^2$$

Payoff of L when $\alpha = 0$

Payoff of L when he keeps a fraction α of the firm and the market believes that his type is H

$$\Rightarrow \alpha^* = -\underbrace{Z}_{\frac{x_H - x_L}{b\sigma^2}} + \sqrt{Z(Z + 2)}$$

- \square α^* increases with Z which
 - increases with the extent of asymmetric info., x_H-x_L
 - decreases with risk aversion, b
 - decreases with the variance of cash flows, σ^2
- Using H's IC:

$$= \alpha x_{H} + (1 - \alpha) x_{H} - \frac{b}{2} \alpha^{2} \sigma^{2} \qquad \Rightarrow \alpha^{**} = \sqrt{\frac{2(x_{H})}{b}}$$

 $\underbrace{X_L}_{Payoff of H}$ when $\alpha = 0$

Payoff of H when he keeps a fraction α of the firm and the market believes that his type is H

 $\square \quad \alpha^{**} < 1 \text{ iff } 2(x_H - x_L) < b\sigma^2; \text{ otherwise, type H prefers every } \alpha > 0 \text{ over } \alpha = 0$ provided that he convinces outsiders that the firm's type is H