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Solutions to selected exercises

6#1(b) Exercise. Differentiate S : Mn,n(R)→Mn,n(R), S(A) = AtA.

Solution. S(A+H) = (A+H)t(A+H) = AtA+AtH +H tA+H tH =
S(A)+(AtH+H tA)+o(‖H‖); (DS)A(H) = AtH+H tA = AtH+(AtH)t.

6#1(d) Exercise. Differentiate P : Mn,n(R)→ Pn, P (A)(x) = det(xI−A),
at the point I.

Solution. By 2e7(b), (D det)I = tr, that is, det(I + H) = 1 + tr(H) +
o(‖H‖). Thus, for x 6= 1,

P (I +H)(x) = det
(
xI − (I +H)

)
= det

(
(x− 1)I −H

)
=

= (x− 1)n det
(
I − 1

x− 1
H
)

= (x− 1)n
(

1 + tr
(
− 1

x− 1
H
)

+ o(‖H‖)
)

=

= (x− 1)n − (x− 1)n−1 trH + o(‖H‖) ;

finally, (DP )I(H)(x) = −(x− 1)n−1 trH.

6#3 Exercise. Define a mapping f : U → Md,d(R), where U = {A ∈
Md,d(R) : ‖A‖ < 1} (the operator norm being used), by

f(A) =
∞∑
k=1

(−1)k+1A
k

k
for ‖A‖ < 1

(it is in fact log(I + A)). Prove that
(a) the series converges;
(b) f is continuously differentiable;
(c) f is open on some neighborhood of 0;
**(d) log(exp(A)) = A for all A in some neighborhood of 0.

Solution. (a) Partial sums are a Cauchy sequence, since

∥∥∥m+n∑
k=m

(−1)k+1A
k

k

∥∥∥ ≤ m+n∑
k=m

∥∥∥(−1)k+1A
k

k

∥∥∥ =

=
m+n∑
k=m

1

k
‖Ak‖ ≤

m+n∑
k=m

1

k
‖A‖k ≤

∞∑
k=m

‖A‖k =
‖A‖m

1− ‖A‖
→ 0

as m→∞.
(b) First, consider (for arbitrary k) a mapping gk : Md,d →Md,d,

gk(A) = Ak .
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We have

gk(A+H) = (A+H)k =
∑

i1,...,ik=0,1

A1−i1H i1 . . . A1−ikH ik =

= Ak︸︷︷︸
gk(A)

+Ak−1H + Ak−2HA+ · · ·+HAk−1︸ ︷︷ ︸
(Dgk)A(H)

+
∑

i1+···+ik≥2

A1−i1H i1 . . . A1−ikH ik

︸ ︷︷ ︸
o(‖H‖)

;

‖gk(A+H)− gk(A)− (Dgk)A(H)‖ ≤
∑

i1+···+ik≥2

‖A1−i1H i1 . . . A1−ikH ik‖ ≤

≤
∑

i1+···+ik≥2

‖A‖1−i1‖H‖i1 . . . ‖A‖1−ik‖H‖ik =

=
(
‖A‖+‖H‖

)
k−‖A‖k−k‖A‖k−1‖H‖ ≤ 1

2
k(k−1)(‖A‖+‖H‖)k−2‖H‖2 .

The series
∑∞

k=1
(−1)k+1

k
gk(A) = f(A) converges by (a); also the series∑∞

k=1
(−1)k+1

k
gk(A+H) = f(A+H) converges when ‖H‖ < 1−‖A‖; and the

series
∞∑
k=1

(−1)k+1

k

(
gk(A+H)− gk(A)− (Dgk)A(H)

)
converges for these H, since

∞∑
k=1

∥∥∥(−1)k+1

k

(
gk(A+H)− gk(A)− (Dgk)A(H)

∥∥∥ ≤
∞∑
k=1

1

k
· 1

2
k(k − 1)(‖A‖+ ‖H‖)k−2‖H‖2 <∞ .

Therefore the series
∑∞

k=1
(−1)k+1

k
(Dgk)A(H) converges, and

∥∥∥f(A+H)− f(A)−
∞∑
k=1

(−1)k+1

k
(Dgk)A(H)

∥∥∥ ≤
≤

∞∑
k=1

k − 1

2
(‖A‖+ ‖H‖)k−2‖H‖2 = o(‖H‖) .

We see that

(Df)A =
∞∑
k=1

(−1)k+1

k
(Dgk)A , (Dgk)A(H) = Ak−1H+Ak−2HA+· · ·+HAk−1 .
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Each Dgk is evidently continuous, and the series converges uniformly on
{A : ‖A‖ ≤ 1− ε} for every ε > 0, therefore Df is continuous.

(c) Clearly, (Dg1)0 = id and (Dgk)0 = 0 for k > 1; thus (Df)0 = id.
It follows that f is open on some neighborhood of 0 (see Theorem 4c1 and
Exercise 3b3).

(**d) (Sketch only) First, for arbitrary polynomials f and g,

g(f(A)) = (g ◦ f)(A)

(this algebraic identity follows from definitions). The problem is that our
functions f, g, f(x) = ex− 1 and g(x) = log(1 +x), are not polynomials (but
power series).

Second, the Jordan normal form1 reduces the general case to the special
case

A = λI + T , T d = 0 .

For arbitrary polynomial f ,

f(A) =
d−1∑
k=0

1

k!
f (k)(λ)T k =

= f(λ)I + f ′(λ)T +
1

2
f ′′(λ)T 2 + · · ·+ 1

(d− 1)!
f (d−1)(λ)T d−1 .

It follows that the same equality holds whenever f is a power series whose
radius of convergence exceeds |λ|. Moreover, if fk are polynomials such that

fk(λ) → f(λ), f ′k(λ) → f ′(λ), . . . , f
(d−1)
k (λ) → f (d−1)(λ) as k → ∞, then

fk(A)→ f(A).
Third, let fn be the n-th Taylor sum for f , f(x) = ex−1, and similarly gn

for g, g(x) = log(1 +x). It appears that fn → f , gn → g and gn ◦ fn → g ◦ f ,
the convergence being the locally uniform (near 0) convergence of functions
and all derivatives.

8#2 Exercise. Prove that the mapping2

S : R+ × (0, π)n−2 × R→ Rn \ Span{e3, . . . , en}
1See Wikipedia, articles “Jordan normal form” and “Logarithm of a matrix” (item

“The logarithm of a non-diagonalizable matrix”).
2The original formulation contains ∪nj=3 Span{ej} rather than Span{e3, . . . , en}; this is

a mistake, sorry.



Tel Aviv University, 2013 Analysis-III 4

defined by equations

xn = r cos θn−2

xn−1 = r sin θn−2 cos θn−3

. . .

x3 = r sin θn−2 sin θn−3 . . . sin θ2 cos θ1

x2 = r sin θn−2 sin θn−3 . . . sin θ2 sin θ1 cosϕ

x1 = r sin θn−2 sin θn−3 . . . sin θ2 sin θ1 sinϕ

is locally invertible, and satisfies1

det(DS) = rn−1
n−2∏
j=1

sinj θj .

Solution. First we prove that S(U) = V where U = (0,∞)×(0, π)n−2×R
and V = Rn \ Span{e3, . . . , en} = {(x1, . . . , xn) : x21 + x22 > 0}. We introduce
rk =

√
x21 + · · ·+ x2k and note that

rk = r sin θn−2 . . . sin θk−1 for k = 2, . . . , n ,

xk = rk cos θk−2 for k = 3, . . . , n .

Thus, x21 + x22 = r22 = (r sin θn−2 . . . sin θ1)
2 > 0 (since θ1, . . . , θn−2 ∈ (0, π)),

that is, S(U) ⊂ V .
Given x ∈ V , we take θk−2 ∈ (0, π) such that cos θk−2 = xk/rk for k =

3, . . . , n, then sin θk−2 =
√

1− x2k
r2k

=
√

r2k−x
2
k

r2k
= rk−1/rk for k = 3, . . . , n,

therefore rk = r sin θn−2 . . . sin θk−1 for k = 2, . . . , n, and xk = rk cos θk−2 =
r sin θn−2 . . . sin θk−1 cos θk−2 for k = 3, . . . , n. We take some (non-unique)
ϕ ∈ R such that cosϕ = x2/r2 and sinϕ = x1/r2, then x2 = r2 cosϕ =
r sin θn−2 . . . sin θ1 cosϕ and x1 = r2 sinϕ = r sin θn−2 . . . sin θ1 sinϕ, which
shows that x ∈ S(U). We see that S(U) = V .

Second, we find det(DS). Denoting the matrix DS by A,

A =

a1,1 . . . a1,n
. . . . . . . . . . . . . .
an,1 . . . an,n

 =

 ∂x1
∂r

∂x1
∂ϕ

∂x1
∂θ1

. . . ∂x1
∂θn−2

. . . . . . . . . . . . . . . . . . . . . . . . .
∂xn
∂r

∂xn
∂ϕ

∂xn
∂θ1

. . . ∂xn
∂θn−2


1The original formulation contains det(DS) rather than |det(DS)|; however, the sign

of the determinant depends on the enumeration of the variables.
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and the corresponding matrix in dimension n− 1 by B, we observe that the
minor An,n is propotional to B,

An,n = sin θn−2 ·B , that is, ak,l = sin θn−2 · bk,l for k, l = 1, . . . , n− 1 .

Therefore detAn,n = sinn−1 θn−2 · detB.
We also note that the first and last columns of A are proportional, except

for the last element,

ai,n = r
cos θn−2
sin θn−2

ai,1 for i = 1, . . . , n− 1 .

Without changing detA we add the first column multiplied by
(
−r cos θn−2

sin θn−2

)
to the last column; we get

a1,n = · · · = an−1,n = 0 ,

an,n =
∂xn
∂θn−2

− rcos θn−2
sin θn−2

∂xn
∂r

= −r sin θn−2 − r
cos θn−2
sin θn−2

cos θn−2 = − r

sin θn−2
.

Finally,

detA = − r

sin θn−2
detAn,n = − r

sin θn−2
sinn−1 θn−2·detB = −r sinn−2 θn−2 detB .

The result follows by induction in n.

8#4 Exercise. Let R2 3 (u, v) 7→ F (u, v) = w ∈ R be a C1 mapping,
F (0, 0) = 0,1 and a, b ∈ R satisfy

a
∂F

∂u
(0, 0) + b

∂F

∂v
(0, 0) 6= 0 .

Prove that
(a) equation F (x − az, y − bz) = 0 in some neighborhood of (0, 0, 0)

determines z as a C1 function of x, y;
(b) a ∂z

∂x
+ b∂z

∂y
= 1 in this neighborhood.

Solution. We rewrite the equation as g(x, y, z) = 0 where g ∈ C1(R3 →
R) is defined by g(x, y, z) = F (x− az, y − bz). We have

∂

∂z
g(x, y, z) = −a∂F

∂u
(x− az, y − bz)− b∂F

∂v
(x− az, y − bz) 6= 0

1This condition is forgotten in the original formulation, sorry.



Tel Aviv University, 2013 Analysis-III 6

at (0, 0, 0). By Th. 5c1, near (0, 0, 0) the equation determines z as a C1

function of x, y. We differentiate the equality

F
(
x− az(x, y), y − bz(x, y)

)
= 0

in x: (
1− a∂z

∂x

)∂F
∂u
− b∂z

∂x
· ∂F
∂v

= 0 ;
∂z

∂x
=

∂F
∂u

a∂F
∂u

+ b∂F
∂v

.

Similarly (differentiating in y),

∂z

∂y
=

∂F
∂v

a∂F
∂u

+ b∂F
∂v

.

Thus, a ∂z
∂x

+ b∂z
∂y

= 1.


