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10a Sanov’s theorem in general

Recall Sanov’s theorem 3b4 for a finite probability space (the multinomial
LDP). We want to generalize it to arbitrary (not just discrete) probability
spaces.

First, consider the space of (infinite) sequences Ω = {0, 1}∞ and a prob-
ability measure p on Ω. Its marginals are a consistent family of probability
measures on {0, 1}j.1

Given n points ω1, . . . , ωn ∈ Ω, we consider the empirical measure 1
n

∑

δωk
∈

P (Ω),
(

1

n

n
∑

k=1

δωk

)

(A) =
#{k : ωk ∈ A}

n
.

Treating ω1, . . . , ωn as independent, distributed p each, we get a distribution
µn ∈ P (P (Ω)) of the empirical measure,

∫

f dµn =

∫

Ω

. . .

∫

Ω

f

(

1

n

n
∑

k=1

δωk

)

p(dω1) . . . p(dωn) .

Indeed, Ω is a compact metrizable space (with the product topology),2 thus,
P (Ω) is also a compact metrizable space, and P (P (Ω)) is well-defined.

In order to use the Dawson-Gärtner theorem 5b2 (or rather its gener-
alization 5b4) we consider the projection (truncation) maps Ω → {0, 1}j

and the corresponding maps gj : P (Ω) → P ({0, 1}j). They separate points
of P (Ω) (think, why). The spaces P ({0, 1}j) depend on j, but 5b4 gener-

alizes readily to such a situation. The image ν
(j)
n of the measure µn un-

der gj is the multinomial distribution (think, why) governed by the mea-

sure p(j) = gj(p). By Theorem 3b4, the sequence (ν
(j)
n )n satisfies LDP

1In fact, every such family corresponds to one and only one p (Kolmogorov’s theorem).
2Homeomorphic to the Cantor set.



Tel Aviv University, 2007 Large deviations 84

with the rate function x 7→ H(x|p(j)) for x ∈ P ({0, 1}j). By the Dawson-
Gärtner theorem, the sequence (µn)n satisfies LDP with the rate function
I(x) = supj H

(

gj(x)
∣

∣gj(p)
)

. However, supj H
(

gj(x)
∣

∣gj(p)
)

= H(x|p), the
relative entropy H(x|p) being defined by

H(x|p) =

∫

(

ln
dx

dp

)

dx =

∫

(dx

dp
ln

dx

dp

)

dp

if x is absolutely continuous w.r.t. p, otherwise H(x|p) = ∞. Finally,

I(x) = H(x|p) .

10a1 Exercise. Let p be a probability measure on [0, 1]. Consider the dis-
tribution µn ∈ P (P [0, 1]) of the empirical measure 1

n

∑

δωk
, where ω1, . . . , ωn

are drawn from p independently. Then (µn)n satisfies LDP with the rate
function x 7→ H(x|p) for x ∈ P [0, 1].

Prove it.
Hint: map {0, 1}∞ onto [0, 1] using binary digits.

The same can be done for any probability measure on R
d, and in fact, on

any Polish space.

10b Cramèr theorem on a bounded interval

Every measure p ∈ P [0, 1] has its barycenter F (p) =
∫

u p(du) ∈ [0, 1]. The
map F : P [0, 1] → [0, 1] is continuous (think, why).

Given p ∈ P [0, 1] and n, we consider the corresponding distribution µn ∈
P (P [0, 1]) of the empirical measure 1

n

∑

δωk
∈ P [0, 1]. The image νn ∈ P [0, 1]

of µn under F is nothing but the distribution of (X1 + · · · + Xn)/n where
X1, . . . , Xn are independent random variables distributed p each. Indeed,
F
(

1
n

∑

δωk

)

= (ω1 + · · ·+ ωn)/n.
Combining Sanov’s theorem 10a1 with the contraction principle 2b1 we

conclude that (a) the sequence (νn)n is LD-convergent, and (b) (νn)n satisfies
LDP with the rate function

I(y) = min{H(x|p) : x ∈ P [0, 1], F (x) = y} .

The case y = F (p) is evident; here I(y) = 0 since H(p|p) = 0.
Given λ ∈ R, we define pλ ∈ P [0, 1] by

dpλ
dp

(u) = constλ · e
λu , constλ =

1
∫

eλu p(du)
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and note that
H(x|pλ) = H(x|p)− λF (x)− ln constλ

(think, why). It means that min{H(x|pλ) : F (x) = y} = min{H(x|p) :
F (x) = y} − λy − ln constλ. The case y = F (pλ) is thus solved; here
min{H(x|pλ) : F (x) = y} = 0, therefore min{H(x|p) : F (x) = y} =
λy + ln constλ, that is,

I(F (pλ)) = λF (pλ)− ln

∫

eλu p(du) ;

here

F (pλ) =

∫

ueλu p(du)
∫

eλu p(du)
.

The same holds for every compactly supported probability measure p on R

(not necessarily concentrated on [0, 1]).
Usually one introduces the logarithmic moment generating function

Λp(λ) = ln

∫

eλu p(du)

(convex by Hölder’s inequality) and its Legendre(-Fenchel) transform

Λ∗
p(u) = sup

λ∈R

(

λu− Λp(λ)
)

.

Then constλ = exp(−Λp(λ)) and F (pλ) = Λ′
p(λ) (think, why). If u = Λ′

p(λ)
then Λ∗

p(u) = λu−Λp(λ) = λF (pλ)−Λp(λ) = I(u). We see that I(u) = Λ∗
p(u)

at least for all u of the form Λ′
p(·).

Let [a, b] be the smallest segment containing the support of p. Then
Λ′

p(−∞) = a and Λ′
p(+∞) = b. It follows that every u ∈ (a, b) is of the form

Λ′
p(·). Thus, I(·) = Λ∗

p(·) on (a, b).
See also 3c (especially (3c3)).

10c A strengthened Sanov’s theorem

The space P (R) of all probability measures on R is endowed with the weak
convergence (compare it with 2a) defined by

(10c1) µn → µ ⇐⇒ ∀f ∈ Cb(R)

∫

f dµn →

∫

f dµ

for µ, µn ∈ P (R). It is equivalent to dist(µn, µ) → 0, where ‘dist’ is the
Lévy-Prokhorov metric,

(10c2) dist(µ, ν) = inf{ε > 0 : ∀F µ(F ) ≤ ν(F+ε)+ε, ν(F ) ≤ µ(F+ε)+ε} ;
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here F runs over all closed subsets ofR, or equivalently, over the rays (−∞, u],
u ∈ R. This metric turns P (R) into a Polish space.

However, the barycenter
∫

u x(du) cannot be treated as a continuous
function of x ∈ P (R) (think, why). This time we cannot combine Sanov’s
theorem with the contraction principle just as we did in 10b. We need the
inverse contraction principle 9e1.

The space M+(R) of all finite positive measures on R is also a Polish
space; (10c1) and (10c2) still work. We consider the closed subset

X1 =
{

x ∈ M+(R) :

∫

x(du)

|u|+ 1
= 1

}

and the map

F : X1 → X2 = P (R) , F (x) = y ⇐⇒
dy

dx
(u) =

1

|u|+ 1
;

the map F is continuous and one-to-one (think, why). The barycenter of the
measure y = F (x) is a well-defined, continuous function of x (think, why).

Given n points u1, . . . , un ∈ R, we represent the empirical measure 1
n

∑

δuk
∈

P (R) as follows:

1

n

n
∑

k=1

δuk
= F

(1

n

n
∑

k=1

(|uk|+ 1)δuk

)

.

Given p ∈ P (R), we denote by µn the distribution of 1
n

∑

(|uk|+1)δuk
and

by νn the distribution of 1
n

∑

δuk
; here u1, . . . , un are independent, distributed

p each. Thus, µn ∈ P (X1), νn ∈ P (X2), and νn is the image of µn under F .
From now on we assume that the distribution p has all exponential mo-

ments, that is,

(10c3)

∫

eiλu p(du) < ∞ for all λ ∈ R .

10c4 Lemma. The sequence (µn)n is exponentially tight.

Proof. (sketch) It is sufficient to prove that for every ε > 0 there exists
C < ∞ such that for all n, µn(K+ε) ≥ 1− εn, where

K = X1 ∩M+[−C,C] = {x ∈ X1 : x(R \ [−C,C]) = 0} .

If x(R \ [−C,C]) < ε then x ∈ K+ε (think, why); we need

P

(1

n

∑

k:|uk|>C

(|uk|+ 1) ≥ ε
)

≤ εn .
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We have

P

(

∑

k:|uk|>C

(|uk|+ 1) ≥ nε
)

= P

(

∑

k

(|uk|+ 1)1(C,∞)(|uk|) ≥ nε
)

≤

≤
E exp λ

∑

k(|uk|+ 1)1(C,∞)(|uk|)

exp(λnε)
=

=

(

e−λε

∫

exp λ(|u|+ 1)1(C,∞)(|u|) p(du)

)n

for every λ > 0. However,
∫

expλ(|u|+ 1)1(C,∞)(|u|) p(du) → 1 as C → ∞.
We choose λ such that 2e−λε ≤ ε and then C such that

∫

(. . . ) ≤ 2.

By Sanov’s theorem, (νn)n satisfies LDP with the rate function y 7→
H(y|p). By the inverse contraction principle (Theorem 9e1) and Lemma
10c4, (µn)n satisfies LDP with the rate function x 7→ H(F (x)|p) (assuming
(10c3)). This is the strengthened Sanov’s theorem.

10d Cramèr theorem on the line

Let p ∈ P (R) satisfy (10c3), and νn be the distribution of (X1+ · · ·+Xn)/n
where X1, . . . , Xn are independent random variables distributed p each.

Applying the contraction principle (Theorem 9b1) to the continuous map
X1 → R, x 7→ barycenter(F (x)) we conclude that (νn)n satisfies LDP with
the rate function

I(u) = min{H(F (x)|p) : x ∈ X1, barycenter(F (x)) = u} =

= min{H(y|p) : y ∈ F (X1), barycenter(y) = u} .

Note that

y ∈ F (X1) ⇐⇒

∫

|u| y(du) < ∞ .

We proceed similarly to 10b. The case u = barycenter(p) is evident; here
I(u) = 0, since H(p|p) = 0 and p ∈ F (X1).

Given λ ∈ R, we define pλ ∈ P (R) by

dpλ
dp

(u) = constλ · e
λu , constλ =

1
∫

eλu p(du)

and note that pλ ∈ F (X1) and

H(y|pλ) = H(y|p)− λ · barycenter(y)− ln constλ .

The rest is exactly as in 10b.
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10d1 Theorem. (Cramèr) Let X1, X2, . . . be i.i.d. random variables, and

Λ(λ) = lnE eλX1 < ∞ for λ ∈ R .

Then the sequence (of distributions) of random variables (X1 + · · ·+Xn)/n
satisfies LDP with the rate function Λ∗,

Λ∗(u) = sup
λ∈R

(

λu− Λ(λ)
)

.

Many generalizations, and various proofs, are well-known. In fact, the
statement remains true if the set {λ : Λ(λ) < ∞} is a neighborhood of 0
(and even only {0}) rather than the whole R. Can it still be proved via
Sanov’s theorem? I do not know.

See also [1, Sect. 2.2].
Finally, I formulate (without proof) a related result.

10d2 Theorem. (Gärtner) Let µ1, µ2, . . . be probability distributions on R

such that the limit

c(λ) = lim
n

1

n
ln

∫

enλuµn(du) ∈ R

exists for every λ ∈ R, and the function c(·) is differentiable on R. Then
(µn)n satisfies LDP with the rate function

I(u) = sup
λ∈R

(

λu− c(λ)
)

.

The condition of (finiteness and) differentiability can be weakened con-
siderably. See the Gärtner-Ellis theorem in [2, Sect. 8], [1, Sect. 2.3].
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