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10a Sanov’s theorem in general

Recall Sanov’s theorem 3b4 for a finite probability space (the multinomial
LDP). We want to generalize it to arbitrary (not just discrete) probability
spaces.

First, consider the space of (infinite) sequences 2 = {0,1}* and a prob-
ability measure p on 2. Its marginals are a consistent family of probability
measures on {0, 1}7.1

Given n points wy, . . . ,w, € (), we consider the empirical measure = Z 0w, €
P(§),
1 & #{k‘ W € A}
(—zawk)<A> - .
n n
k=1
Treating wy, ..., w, as independent, distributed p each, we get a distribution

tn € P(P(Q)) of the empirical measure,

fram= [ f G s

Indeed, € is a compact metrizable space (with the product topology),? thus,
P(9) is also a compact metrizable space, and P(P(2)) is well-defined.

In order to use the Dawson-Géartner theorem 5b2 (or rather its gener-
alization 5b4) we consider the projection (truncation) maps Q — {0,1}/
and the corresponding maps g; : P(2) — P({0,1}7). They separate points
of P(Q) (think, why). The spaces P({0,1}7) depend on j, but 5b4 gener-
alizes readily to such a situation. The image U9 of the measure by, UD-
der g; is the multinomial distribution (think, why) governed by the mea-

sure p¥) = g;(p). By Theorem 3bd4, the sequence (Vr(f))n satisfies LDP

n fact, every such family corresponds to one and only one p (Kolmogorov’s theorem).
2Homeomorphic to the Cantor set.



Tel Aviv University, 2007 Large deviations 84

with the rate function x + H(z|p")) for z € P({0,1}/). By the Dawson-
Gértner theorem, the sequence (u,), satisfies LDP with the rate function

I(x) = sup; H(g;()|g;(p)). However, sup; H(g;(x)|g;(p)) = H(z|p), the
relative entropy H (z|p) being defined by

H(:E|p):/<lnj—;>dx:/(j—;lnj—;)dp

if x is absolutely continuous w.r.t. p, otherwise H(x|p) = co. Finally,
I(x) = H(zlp).

10al Exercise. Let p be a probability measure on [0, 1]. Consider the dis-
tribution g, € P(P[0,1]) of the empirical measure = >~ 4, , where wy, ..., wy,
are drawn from p independently. Then (u,), satisfies LDP with the rate
function z — H(z|p) for = € P[0, 1].

Prove it.

Hint: map {0, 1}* onto [0, 1] using binary digits.

The same can be done for any probability measure on R, and in fact, on
any Polish space.

10b Crameér theorem on a bounded interval

Every measure p € P[0, 1] has its barycenter F(p) = [wup(du) € [0,1]. The
map F': P[0,1] — [0, 1] is continuous (think, why).

Given p € P[0, 1] and n, we consider the corresponding distribution p,, €
P(PI0, 1]) of the empirical measure + >~ d,, € P[0, 1]. The image v, € P[0, 1]
of p, under F' is nothing but the distribution of (X; + --- + X,,)/n where
Xq,..., X, are independent random variables distributed p each. Indeed,
F(£36.,) = (Wi + - +w,)/n.

Combining Sanov’s theorem [I0all with the contraction principle 2b1 we
conclude that (a) the sequence (v,), is LD-convergent, and (b) (v,), satisfies

LDP with the rate function
I(y) = min{H (z|p) : x € P[0, 1], F(z) = y} .

The case y = F(p) is evident; here I(y) = 0 since H(p|p) = 0.
Given A € R, we define py € P[0, 1] by

dpx

Au 1
dp ’

= const, - fy=——
(u) = const) - e const y T p(du)
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and note that

H(x|py) = H(x|p) — AF(x) — In const
(think, why). It means that min{H (z|py) : F(z) = y} = min{H (z|p) :
F(z) = y} — Ay — Inconsty. The case y = F(p,) is thus solved; here
min{H (z|p)) : F(z) = y} = 0, therefore min{H (z|p) : F(x) = y} =
Ay + Inconsty, that is,

I(F(ps)) = AF(ps) — In / M p(du)

here
J ue p(du)
~ [ep(du)
The same holds for every compactly supported probability measure p on R
(not necessarily concentrated on [0, 1]).
Usually one introduces the logarithmic moment generating function

A,(N) = ln/e’\“p(du)

F(py)

(convex by Hélder’s inequality) and its Legendre(-Fenchel) transform

Aj(u) = sup(Au— Ay(N)) .
AER

Then consty = exp(—A,(A)) and F(py) = A} (A) (think, why). If u = AJ(\)
then A (u) = Au—A,(A) = AF(pa) —Ap(A) = I(u). We see that I(u) = Aj(u)
at least for all u of the form AJ(-).

Let [a,b] be the smallest segment containing the support of p. Then
Al (—o0) = a and A} (+00) = b. It follows that every u € (a,b) is of the form
AL(+). Thus, I(-) = A3(-) on (a,b).

See also 3c (especially (3c3)).

10c A strengthened Sanov’s theorem

The space P(R) of all probability measures on R is endowed with the weak
convergence (compare it with 2a) defined by

(10c1) pn = 1 <= VfeCy(R) /fdun%/fdu

for p, u, € P(R). It is equivalent to dist(u,, ) — 0, where ‘dist’ is the
Lévy-Prokhorov metric,

(10c2) dist(p,v) = inf{e > 0:VF u(F) <v(Fi.)+e, v(F) < p(Fy)+e};
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here F runs over all closed subsets of R, or equivalently, over the rays (—oo, ul,
u € R. This metric turns P(R) into a Polish space.

However, the barycenter [wuz(du) cannot be treated as a continuous
function of x € P(R) (think, why). This time we cannot combine Sanov’s
theorem with the contraction principle just as we did in [I0bl We need the
inverse contraction principle 9el.

The space M, (R) of all finite positive measures on R is also a Polish

space; (I0cI)) and ([I0c2) still work. We consider the closed subset

X, = {x e M, (R) : ‘ﬁ‘?j)l - 1}

and the map

the map F' is continuous and one-to-one (think, why). The barycenter of the
measure y = F'(x) is a well-defined, continuous function of = (think, why).

Given n points uq, . .., u, € R, we represent the empirical measure % > O,
P(R) as follows:

LS b= (o (el + 108, )
k=1

Given p € P(R), we denote by 1, the distribution of 3 (|uy|+1)d,, and
by v, the distribution of % > 0y, here uy, . .., u, are independent, distributed
p each. Thus, u,, € P(X}), v, € P(X,), and v, is the image of p,, under F.

From now on we assume that the distribution p has all exponential mo-
ments, that is,

(10c3) /ei’\”p(du) < oo forall A €eR.

10c4 Lemma. The sequence (), is exponentially tight.

Proof. (sketch) It is sufficient to prove that for every ¢ > 0 there exists
C' < oo such that for all n, pu,(K.) > 1— ", where

K=XNnM[-C,C]={z € X;:z(R\ [-C,C]) =0}.
If z(R\ [-C,C]) < e then z € K, (think, why); we need

P(l > (ul+1)>e) <en.

n
k:\uk\>c
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We have

P (ul+1) 2 ne) =P (D (sl + D co(furl) = ne)

k:\uk\>C

IA

< E exp A, (Jur] + 1)1 00) (Jur|)
= exp(Ane)

— <e>‘€/exp AJu| + 1>1(c,oo><|ul>p<du>)n

for every A > 0. However, [ exp A(Ju| + 1)1(c00)(u]) p(du) — 1 as C — oo.
We choose A such that 2e7*¢ < ¢ and then C such that [(...) < 2. O

By Sanov’s theorem, (v,), satisfies LDP with the rate function y —
H(y|p). By the inverse contraction principle (Theorem 9el) and Lemma
M0, (pn), satisfies LDP with the rate function = — H(F(z)|p) (assuming
(I0c3))). This is the strengthened Sanov’s theorem.

10d Cramer theorem on the line

Let p € P(R) satistfy (I0c3]), and v, be the distribution of (X; +---+ X,,)/n
where X1, ..., X,, are independent random variables distributed p each.

Applying the contraction principle (Theorem 9b1) to the continuous map
X; — R, x — barycenter(F(x)) we conclude that (v,), satisfies LDP with
the rate function

I(u) = min{H(F(x)|p) : © € Xy, barycenter(F(z)) = u} =
=min{H (y|p) : y € F(&X}), barycenter(y) = u} .

Note that
y e FX) <+— /\u\ y(du) < oo.

We proceed similarly to [[Obl The case u = barycenter(p) is evident; here
I(u) =0, since H(p|p) =0 and p € F(X}).
Given A € R, we define py € P(R) by

dp)\ A 1
—=(u) = const, - e, consty = +————
a T p(du)

and note that p, € F(&}) and
H(y|lpx) = H(y|p) — A - barycenter(y) — In const .

The rest is exactly as in [I0Dl
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10d1 Theorem. (Cramer) Let Xi, Xs,... be i.i.d. random variables, and
AN =InEe* < oo for A € R.

Then the sequence (of distributions) of random variables (X; 4+ ---+ X,,)/n
satisfies LDP with the rate function A*,

A*(u) = sup(Au — A(N)).

AER

Many generalizations, and various proofs, are well-known. In fact, the
statement remains true if the set {\ : A(A\) < oo} is a neighborhood of 0
(and even only {0}) rather than the whole R. Can it still be proved via
Sanov’s theorem? I do not know.

See also [I], Sect. 2.2].

Finally, I formulate (without proof) a related result.

10d2 Theorem. (Gértner) Let uq, po, ... be probability distributions on R
such that the limit

1
c(A) = lim — ln/e")‘“,un(du) eR

n n

exists for every A € R, and the function c¢(-) is differentiable on R. Then
(f4n)n satisfies LDP with the rate function

I(u) = sup(Au — ¢(N)) .

AER

The condition of (finiteness and) differentiability can be weakened con-
siderably. See the Gértner-Ellis theorem in [2], Sect. 8], [I, Sect. 2.3].
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