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7a Constant drift by spatial bias

We return to the rescaled random walk treated in 5a12–5a14, Xn

(
k
n

)
=

β1+···+βk

n
, P

(
βk = 0

)
= P

(
βk = 1

)
= 1

2
; here k = 0, 1, 2, . . . (not just

0, 1, . . . , n). The corresponding LDP follows from (5b7), like (5a11) from
Theorem 5a9; the rate function is w 7→

∫
∞

0
I0.5(w

′(t)) dt.
We modify the random walk as follows:

Xn

(k

n

)

=
s1 + · · · + sk

n
+ v

k

n
, P

(
sk = −1

)
= P

(
sk = +1

)
=

1

2
;

here v ∈ (0, 1) is a parameter (and sk are independent, of course). Now Xn

is not monotone, but tends to increase with the given speed v (the drift). It
satisfies LDP with the rate function

(7a1) J(w) =

∫
∞

0

J0(w
′(t) − v) dt .

Here w runs over all functions [0,∞) → R satisfying

(v−1)(t−s) ≤ w(t)−w(s) ≤ (v+1)(t−s) for 0 ≤ s ≤ t < ∞ , and w(0) = 0

(recall (5a10)), with the topology of uniform convergence on compacta (say,
dist(w1, w2) = maxt∈[0,∞)

1
t2+1

|w1(t) − w2(t)|); and

J0(x) = I0.5

(1 + x

2

)

=
b

b b b

−1 1

ln 2 J0

=
1

2
(1 − x) ln(1 − x) +

1

2
(1 + x) ln(1 + x) for x ∈ [−1, 1] .



Tel Aviv University, 2007 Large deviations 50

We consider the (rare) event

An : ∃k Xn

(k

n

)

≤ −1 .

Similarly to 5a13 we guess the extremal function w(·),

b

b

t

−1

w′(s) =

{

−1/t for s ∈ (0, t),

v for s ∈ (t,∞),

but we have to find the optimal t by minimizing

J(w) = tJ0

(

−
1

t
− v

)

= tJ0

(1

t
+ v

)

.
b

b

b

bb

0 1v 1
t
+v

J0

The minimum exists and is unique due to strict convexity of J0.
Conditionally, given An, the (random) time of the first hit of (−∞,−1]

is close to t with high probability. Moreover, all k/n such that Xn

(
k
n

)
≤ −1

are close to t (with high probability).
For small v we get 1/t ≈ v, since J0(ε) ≈ ε2/2 for small ε.

7a2 Exercise. Prove all said above.

You see, the stronger the stream, the faster one should move against it!

7b Constant drift by biased probabilities

An unfair coin leads to another random walk with drift,

Xn

(k

n

)

=
s1 + · · · + sk

n
, P

(
sk = −1

)
= 1 − p , P

(
sk = +1

)
= p ;

here p ∈ (0, 1) is a parameter. Now Xn tends to move with the speed
v = E sk = 2p − 1 ∈ (−1, 1) (the drift). It satisfies LDP with the rate
function

J(w) =

∫
∞

0

Jv(w
′(t)) dt .

Here w runs over all functions [0,∞) → R satisfying

(7b1) |w(t) − w(s)| ≤ t − s whenever 0 ≤ s ≤ t < ∞ , and w(0) = 0
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(with the topology uniform on compacta); and (letting p = (1 + v)/2)

Jv(x) = Ip

(1 + x

2

)

=
1 − x

2
ln

1 − x

2(1 − p)
+

1 + x

2
ln

1 + x

2p
=

= J0(x) −
x

2
ln

1 + v

1 − v
−

1

2
ln(1 − v2) for x ∈ [−1, 1] .

bb

b

b

−1 1v

Jv (v= 1
3
)

7b2 Exercise. Prove the LDP above.
Hint: Theorem 5a9 and 2c1; recall also the end of 3a.

Let p ∈ (0.5, 1), then v > 0, and the event

An : ∃k Xn

(k

n

)

≤ −1

is rare. Still, the extremal function w(·) is of the form

b

b

t

−1

w′(s) =

{

−1/t for s ∈ (0, t),

v for s ∈ (t,∞),

but this time the optimal t minimizes

(7b3)
J(w) = tJv

(

−
1

t

)

= b

b

b

b

b

11
t1

2
ln(1−v2)

J0

= tJ0

(1

t

)

−
t

2
ln(1 − v2) +

1

2
ln

1 + v

1 − v
.

As before, the minimum exists and is unique due to strict convexity of J0.
But now we are able to calculate it explicitly: t = 1/v is optimal!

bb b b

b

b

−1 0 1v
−

1
t

b

Jv

b bbb

b

b

10−1 −v v

b

J−v

Indeed, Jv(−x) = J−v(x) = Jv(x) + const · x.
Conditionally, given An, the (random) time of the first hit of (−∞,−1] is

close to 1/v with high probability. Moreover, all k/n such that Xn

(
k
n

)
≤ −1

are close to 1/v (with high probability).

7b4 Exercise. Prove all said above.

You see, against the stream v one should move with the speed (−v)!
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7c Variable drift by biased probabilities

Let v : R → (−1, 1) be a continuous function. We define processes Xn by

(7c1) P

(

Xn

(k + 1

n

)

= Xn

(k

n

)

±
1

n

)

=
1

2

(

1 ± v
(

Xn

(k

n

)))

.

Such process tends to move with the variable speed v(Xn(·)) (the drift). It
satisfies LDP with the rate function
(7c2)

J(w) =

∫
∞

0

(

J0(w
′(t)) −

w′(t)

2
ln

1 + v(w(t))

1 − v(w(t))
−

1

2
ln

(
1 − v2(w(t))

)

︸ ︷︷ ︸

Jv(w(t))(w′(t))

)

dt .

Here w runs over all functions [0,∞) → R satisfying (7b1) (with the topology
uniform on compacta).

In order to prove this LDP we generalize Theorem 2c1 as follows.

7c3 Theorem. Let (µn)n, (νn)n be two sequences of probability measures
on a compact metrizable space K, satisfying

dνn

dµn

= cne−nhn for all n

for some c1, c2, · · · ∈ (0,∞) and a convergent sequence (hn)n, hn ∈ C(K);
thus, ‖hn − h‖C(K) → 0 for some h ∈ C(K).

(a) If (µn)n is LD-convergent then (νn)n is LD-convergent.
(b) If (µn)n satisfies LDP with a rate function I, then (νn)n satisfies LDP

with the rate function

J = (I + h) − min
K

(I + h) = I + h − lim
n→∞

1

n
ln cn .

7c4 Exercise. Prove Theorem 7c3.
Hint: recall 2c2 and note that

min
K

e−nhn

e−nh
≤

∫
|f |ne−nhn dµn

∫
|f |ne−nh dµn

≤ max
K

e−nhn

e−nh
.

Let us prove (7c2) for a finite time interval, namely, k ≤ n and t ≤
1; generalization to a longer time interval is straightforward, and LDP for
intinite time follows via Theorem 5b2 as before.

We compare the distribution νn of the process Xn given by (7c1) with
the distribution µn for v = 0. Denoting for convenience w

(
k
n

)
by wn,k and
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n
(
w

(
k+1
n

)
− w

(
k
n

))
by w′

n,k we have

dνn

dµn
(w) =

n−1∏

k=0

(
1 + w′

n,kv(wn,k)
)
;

1

n
ln

dνn

dµn
(w) =

1

n

n−1∑

k=0

ln
(
1 + w′

n,kv(wn,k)
)

=

=
1

2n

n−1∑

k=0

w′

n,k ln
1 + v(wn,k)

1 − v(wn,k)
+

1

2n

n−1∑

k=0

ln(1 − v2(wn,k))

(when checking it do not forget that w′

n,k = ±1). We define hn, h by

hn(w) =
1

2n

n−1∑

k=0

w′

n,k ln
1 + v(wn,k)

1 − v(wn,k)
,

h(w) =
1

2

∫ 1

0

w′(t) ln
1 + v(w(t))

1 − v(w(t))
dt .

Functions w : [0, 1] → R of the given class may be described by

w(t) =

∫ t

0

ϕ(s) ds , ϕ ∈ L∞(0, 1) , ‖ϕ‖L∞
≤ 1 ;

the given topology (uniform on compacta) on the functions w corresponds to
the weak∗ topology on the functions ϕ, recall (5a3)–(5a5). (No matter that
now −1 ≤ ϕ(·) ≤ 1 rather than 0 ≤ ϕ(·) ≤ 1.)

The functions hn are evidently continuous. It is less evident that the
function h is continuous. On one hand, w 7→

∫
w′η is continuous for every η ∈

L1(0, 1), and the function ηw(·) = ln 1+v(w(·))
1−v(w(·))

belongs to L1(0, 1) (moreover,

to C[0, 1]). On the other hand,
∫

w′ηw is more dangerous than just
∫

w′η.
Let wn → w (uniformly) as n → ∞, then ηwn

→ ηw in L1(0, 1) (and more-
over, in C[0, 1]). We have, first,

∫
w′

nηw →
∫

w′ηw and second, |
∫

w′

nηwn
−

∫
w′

nηw| ≤ ‖w′

n‖∞‖ηwn
− ηw‖1 → 0. Therefore

∫
w′

nηwn
→

∫
w′ηw as n → ∞,

whenever wn → w. It means that h is continuous.

7c5 Exercise. Prove that hn(w) → h(w) as n → ∞, for every w of the given
class.

Hint: h(w) =
∫

w′ηw and hn(w) =
∫

w′ηw,n, where ηw,n(t) = ηw

(
k
n

)
for

t ∈
(

k
n
, k+1

n

)
.

7c6 Exercise. Prove that the convergence in 7c5 is uniform in w.
Hint: the function ln 1+v(·)

1−v(·)
is uniformly continuous on [−1, 1], therefore

all ηw(·) are equicontinuous.
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(Of course, continuity of h can be deduced from 7c6.)

7c7 Exercise. Prove the LDP with the rate function (7c2) for the process
(7c1).

Hint: use 7c3 and 7c6, and do not forget the last term 1
2n

∑
ln(. . . ) in

1
n

ln dνn

dµn
.

Assuming v(x) > 0 for all x ∈ [−1, 0] we consider the rare event

An : ∃k Xn

(k

n

)

≤ −1 .

How to find the extremal function w(·)? We guess that it is a smooth mono-
tone function on [0, t], w(t) = −1, w′(·) < 0 on [0, t]; and, as before, [t,∞)
does not contribute to J(w). Assuming all that, we introduce the function
τ : [−1, 0] → [0, t] inverse to w|[0,t] and note that

J(w) =

∫ t

0

(

J0(w
′(s)) −

w′(s)

2
ln

1 + v(w(s))

1 − v(w(s))
−

1

2
ln

(
1 − v2(w(s))

))

ds =

=

∫ 0

−1

(

− τ ′(x)J0

( 1

τ ′(x)

)

+
1

2
ln

1 + v(x)

1 − v(x)
+

1

2
τ ′(x) ln

(
1 − v2(x)

))

dx .

We have to minimize it in τ(·). This task boils down to minimization for
each x separately, in the variable (−τ ′(x)). We get (7b3) with (−τ ′(x))
substituted for t. The minimum is reached at −τ ′(x) = 1/v(x), which means

w′(s) = −v(w(s)) for s ∈ [0, t] ,

just the opposite to the drift!1

7d Extremal functions as mechanical trajectories

Minimization of the functional J(w) (defined by (7c2)) over smooth functions
w is a usual task for the calculus of variations. If w minimizes J among all
smooth functions satisfying boundary conditions w(0) = 0, w(t) = a (for
given t and a), then necessarily

(7d1)
d

dε

∣
∣
∣
∣
ε=0

J(w + εw1) = 0

1It can be proved that this function is indeed the unique global minimizer of J on the
set of all functions w : [0,∞) → R satisfying (7b1) and such that ∃t w(t) = −1.



Tel Aviv University, 2007 Large deviations 55

for all smooth w1 satisfying w1(0) = 0, w1(t) = 0. For J of the form

(7d2) J(w) =

∫ t

0

L
(
w(s), w′(s)

)
ds

the necessary condition becomes the Euler-Lagrange equation (see also [1,
Appendix G])

(7d3)
d

ds
L,2

(
w(s), w′(s)

)
= L,1

(
w(s), w′(s)

)

where L,1 and L,2 are the partial derivatives of L (in the first and the second
argument, respectively).

In our case

(7d4) L(q, r) = J0(r) −
1

2
ln

(
1 − v2(q)

)
;

the middle term in (the integrand of) (7c2) is omitted, since
∫ t

0

w′(s)

2
ln

1 + v(w(s))

1 − v(w(s))
ds =

∫ a

0

1

2
ln

1 + v(q)

1 − v(q)
dq

does not depend on w. We have

L,1(q, r) =
v(q)v′(q)

1 − v2(q)
, L,2(q, r) = J ′

0(r) =
1

2
ln

1 + r

1 − r
;

thus, the Euler-Lagrange equation becomes

(7d5)
d

ds

1

2
ln

1 + w′(s)

1 − w′(s)
︸ ︷︷ ︸

w′′(s)

1−w′2(s)

=
v(w(s))v′(w(s))

1 − v2(w(s))
,

a nonlinear ordinary differential equation of second order.
A paradox: (7d5) is intact if v is replaced with (−v). The direction of

the drift does not matter! Well, it does not matter as long as the boundary
conditions are fixed (w(0) = 0, w(t) = a).

Here is a nice mechanical interpretation. Imagine a massive particle with
a coordinate q = q(s), speed q̇ = dq

ds
and Lagrangian L = J0(q̇) −

1
2
ln(1 −

v2(q)). Its action (on the time interval [0, t]) is
∫ t

0
L ds, and the least action

principle leads just to the minimization problem treated above. The momen-
tum is p = ∂L

∂q̇
= J ′

0(q̇) = 1
2
ln 1+q̇

1−q̇
, the force is F = ∂L

∂q
= v(q)v′(q)

1−v2(q)
, and the

Euler-Lagrange equation turns into the motion equation ṗ = F , that is,

1

1 − q̇2
q̈ =

v(q)v′(q)

1 − v2(q)
,
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the same as (7d5).
Mechanics tells us also, that the potential energy is U = 1

2
ln(1 − v2(q))

(its gradient being the force F ), and the kinetic energy is T = pq̇ − L =

−1
2
ln(1 − q̇2) (check it). The total energy T + U = 1

2
ln 1−v2(q)

1−q̇2 is constant
along each trajectory. It means that

1 − v2(w(s))

1 − w′2(s)
= const

for every extremal function.
Especially, if q̇ is small then the kinetic energy T ≈ 1

2
q̇2 (as usual. . . ).

Also, if the function v(·) is small then the potential energy U ≈ −1
2
v2(q).

Accordingly, the motion equation becomes q̈ ≈ v(q)v′(q), and the energy
conservation law becomes q̇2 − v2(q) ≈ const.

In other words, if v(·) and w′(·) are small then (7d5) becomes w′′(s) ≈
v(w(s))v′(w(s)); also, w′2(s) − v2(w(s)) ≈ const.

7d6 Example. Let v(q) = 1 + (q − 0.5)2 for q ∈ [0, 1]. We consider the
(rare) event

An : ∀k ≤ 10n 0 ≤ Xn

(k

n

)

≤ 1 .

The boundary conditions are w(0) = 0, w(10) = 1. We guess that the
extremal function w(·) increases from 0 to (nearly) 0.5 in a time < 1; then
it remains near 0.5 till a time > 9; afterwards it increases and arrives to 1 at
10.

The mechanical interpretation refines the guess. The potential energy is
maximal at 0.5. The particle starts from 0 with a kinetic energy higher than
the potential wall, but only a little. After climbing to the top of the potential
wall, the particle slows down (almost stops). After a time it falls down on
the other side of the wall.

A wonder: under some condition, the (inertialess) Markov process be-
haves like a mechanical particle endowed with inertia!

7e Variable drift by spatial bias

Let v : R → (−1, 1) be a continuous function. We define processes Xn by

(7e1)
Xn(0) = 0 ,

Xn

(k + 1

n

)

= Xn

(k

n

)

+
1

n
sk+1 +

1

n
v
(

Xn

(k

n

))

;
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as in 7a, sk are independent equiprobable ±1. Such process tends to move
with the variable speed v(Xn(·)) (the drift). By analogy with (7a1) it is easy
to guess that (Xn)n satisfies LDP with the rate function

(7e2) J(w) =

∫
∞

0

J0

(
w′(t) − v(w(t)

)
dt .

How to prove it? And what is the set of functions w?
We consider the corresponding driftless processes

Yn

(k

n

)

=
s1 + · · ·+ sk

n

and note that

Yn

(
k+1
n

)
− Yn

(
k
n

)

1
n

=
Xn

(
k+1
n

)
− Xn

(
k
n

)

1
n

− v

(

Xn

(k

n

))

;

Yn

(k

n

)

= Xn

(k

n

)

−
1

n

k−1∑

j=0

v
(

Xn

( j

n

))

.(7e3)

We define a map F of the space of continuous functions on [0,∞) (vanishing
at 0) to itself,

(7e4) F (w)(t) = w(t) −

∫ t

0

v(w(s)) ds . (w(0) = 0)

In general, F is not one-to-one (a counterexample: v(x) =
√

|x|, w1(t) =
t2/4, w2(t) = 0). However, we assume that v is a Lipschitz function, that is,

(7e5) |v(x) − v(y)| ≤ Cv|x − y| for all x, y

and some constant Cv < ∞.1

7e6 Exercise. The map F is one-to-one.
Prove it.
Hint: if F (w1) = F (w2) then |w1(t) − w2(t)| ≤ Cv

∫ t

0
|w1(s) − w2(s)| ds;

show that e−Cvt|w1(t) − w2(t)| is decreasing in t.

For any C ∈ (0,∞) we introduce the compact metrizable space Lip(C)
of all w : [0,∞) → R such that

w(0) = 0 , |w(s) − w(t)| ≤ C|s − t| for all s, t ∈ R ,

1Also ‘locally Lipschitz’ would be enough; that is, Lipschitz on every bounded interval.
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endowed with the topology uniform on bounded time intervals. Note that

Xn(·) ∈ Lip(2) ; Yn(·) ∈ Lip(1) ;

w ∈ Lip(C) =⇒ F (w) ∈ Lip(C + 1) .

It follows from 7e6 that the restriction

F |Lip(C) : Lip(C) → F (Lip(C)) is a homeomorphism .

7e7 Lemma.

max
[0,t]

|F (Xn(·)) − Yn(·)| ≤
2Cvt + 4

n

for all t > 0, n and s1, . . . , sn.

Proof. Using (7e3), (7e4) and (7e5),

∣
∣
∣F

(
Xn(·)

)(k

n

)

− Yn

(k

n

)∣
∣
∣ =

∣
∣
∣
∣

∫ k/n

0

v
(
Xn(s)

)
ds −

1

n

k−1∑

j=0

v
(

Xn

( j

n

))
∣
∣
∣
∣
≤

≤
k

n
max

j

∣
∣
∣
∣
n

∫ (j+1)/n

j/n

v
(
Xn(s)

)
ds − v

(

Xn

( j

n

))
∣
∣
∣
∣
≤

k

n
Cv · 2 ,

since Xn(·) ∈ Lip(2). It remains to note that F (Xn(·))− Yn(·) ∈ Lip(4).

It follows that the distribution of F (Xn(·)) and the distribution of Yn(·)
come together (recall 5d) as measures on Lip(3). By Prop. 5d1, LDP for
(Yn)n implies LDP for (F (Xn))n with the same rate function.

We know that the rate function for (Yn)n is w 7→
∫
∞

0
J0(w

′(t)) dt, but
this happens on Lip(1). What happens on Lip(3)? We just extend the rate
function from Lip(1) to Lip(3) by +∞ on Lip(3) \ Lip(1).

7e8 Exercise. Formulate and prove the corresponding general result.

We may still write
∫

∞

0
J0(w

′(t)) dt, provided that J0 is extended from
[−1, 1] to R by +∞ on R \ [−1, 1].

Having the rate function for (F (Xn))n we get the rate function for (Xn)n

via the homeomorphism: J(w) =
∫
∞

0
J0

(
(F (w))′(t)

)
dt.

7e9 Exercise. Formulate and prove the corresponding general result.
Hint: if you like, treat it as a trivial case of the contraction principle.

We got (7e2), with two remarks. First, w rans over Lip(2). Second,
J0(x) = +∞ for x ∈ R \ [−1, 1].

See also [3, Sect. 6], [2, Sect. 5.6] and [1, Sect. 4C].
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